
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

 AN OBJECT-ORIENTED DISCRETE-EVENT
SIMULATION OF LOGISTICS

(MODELING FOCUSED LOGISTICS)

by

John L. Ruck

September 1998

 Thesis Advisor: Arnold H. Buss
 Second Reader: Gordon Bradley

AN OBJECT-ORIENTED DISCRETE-EVENT SIMULATION OF
LOGISTICS

(MODELING FOCUSED LOGISTICS)
John L. Ruck-Lieutenant Commander, United States Navy

B.S.E., Tulane University, 1982
M.S., Central Michigan University, 1995

Master of Science in Operations Research-September 1998
Thesis Advisor: Arnold H. Buss, Department of Operations Research
Second Reader: Gordon Bradley, Department of Operations Research

Joint Vision 2010 puts forth four operational concepts describing how U.S. forces
will conduct combat in the future. One of these concepts is Focused Logistics,
which Joint Vision 2010 defines as “the precise application of logistics.” In order
to study the effects of Focused Logistics, a flexible method of simulating possible
logistics systems is needed. The Flexible Experimental Logistics Simulator
(FLEXLOGS) is an object-oriented, discrete-event simulation that is designed to
be used to evaluate proposed future logistics strategies. First, the author develops
a model capable of simulating any proposed logistics scheme with minimal
modification to the software. Second, the thesis discusses the design and use of
the model. Finally, the model is used to explore the shape of curves defined by
the probability of combat victory verses “logistical footprint size” and “premium
transportation availability.” The model implements the draft Logistical
Conceptual Object Model being developed as part of the Focused Logistics Study
by the Office of the Secretary of Defense, Program Analysis and Evaluation,
Simulation Analysis Center.

DoD KEY TECHNOLOGY AREA: Modeling and Simulation, Logistics

KEYWORDS: Focused Logistics, FLEXLOGS, Discrete-Event Simulation

i

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September, 1998

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
AN OBJECT-ORIENTED DISCRETE-EVENT SIMULATION OF LOGISTICS
(MODELING FOCUSED LOGISTICS)

5. FUNDING NUMBERS
DSAM80008

6. AUTHOR(S)
Ruck, John L.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of the Secretary of Defense, Program Analysis and Evaluation, Pentagon room 2E314,
Washington, D.C. 20301-1800

10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Joint Vision 2010 puts forth four operational concepts describing how U.S. forces will conduct combat in the future.
One of these concepts is Focused Logistics, which Joint Vision 2010 defines as “the precise application of logistics.”
In order to study the effects of Focused Logistics, a flexible method of simulating possible logistics systems is needed.
The Flexible Experimental Logistics Simulator (FLEXLOGS) is an object-oriented, discrete-event simulation that is
designed to be used to evaluate proposed future logistics strategies. First, the author develops a model capable of
simulating any proposed logistics scheme with minimal modification to the software. Second, the thesis discusses the
design and use of the model. Finally, the model is used to explore the shape of curves defined by the probability of
combat victory verses “logistical footprint size” and “premium transportation availability.” The model implements the
draft Logistical Conceptual Object Model being developed as part of the Focused Logistics Study by the Office of the
Secretary of Defense, Program Analysis and Evaluation, Simulation Analysis Center.

14. SUBJECT TERMS
Focused Logistics, FLEXLOGS, Discrete-Event Simulation

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

ii

iii

Approved for public release; distribution is unlimited

AN OBJECT-ORIENTED DISCRETE-EVENT SIMULATION OF LOGISTICS
(MODELING FOCUSED LOGISTICS)

John L. Ruck
Lieutenant Commander, United States Navy

B.S.E., Tulane University, 1982
M.S., Central Michigan University, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
 September 1998

Author:

Approved by:

Richard Rosenthal, Chairman
Department of Operations Research

Gordon Bradley, Second Reader

Arnold H. Buss, Thesis Advisor

John L. Ruck

iv

v

ABSTRACT

Joint Vision 2010 puts forth four operational concepts describing how U.S. forces

will conduct combat in the future. One of these concepts is Focused Logistics, which

Joint Vision 2010 defines as “the precise application of logistics.” In order to study the

effects of Focused Logistics, a flexible method of simulating possible logistics systems is

needed. The Flexible Experimental Logistics Simulator (FLEXLOGS) is an object-

oriented, discrete-event simulation that is designed to be used to evaluate proposed future

logistics strategies. First, the author develops a model capable of simulating any proposed

logistics scheme with minimal modification to the software. Second, the thesis discusses

the design and use of the model. Finally, the model is used to explore the shape of curves

defined by the probability of combat victory verses “logistical footprint size” and

“premium transportation availability.” The model implements the draft Logistical

Conceptual Object Model being developed as part of the Focused Logistics Study by the

Office of the Secretary of Defense, Program Analysis and Evaluation, Simulation Analysis

Center.

vi

vii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free from computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user

viii

ix

 TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND... 2

B. PREVIOUS RESEARCH ... 4

C. OUTLINE.. 6

II. THE CONCEPTUAL MODEL ... 7

A. THE PURPOSE OF A CONCEPTUAL MODEL................................... 7

B. THE CONCEPTUAL MODEL OF MILITARY LOGISTICS............... 8

III. MODEL IMPLEMENTATION AND DESCRIPTION 11

A. OVERALL MODEL... 11

B. STRATEGY FOR FLEXIBILITY ... 12

C. OBJECT DESCRIPTIONS .. 13
1. Package Descriptions ... 13

D. RUNNING THE MODEL .. 15

IV. AN ANALYSIS OF THE EFFECT OF LOGISTICS ON THE OUTCOME OF
COMBAT... 17

A. METHODOLOGY ... 17
1. Exploratory Analysis .. 17
2. Measures of Effectiveness .. 18
3. Choice of Input Variables ... 19

B. RESULTS.. 20

V. CONCLUSIONS AND RECOMMENDATIONS... 35

APPENDIX A CONCEPTUAL OBJECT MODEL DRAFT ENTITY
RELATIONSHIP DIAGRAM ... 37

APPENDIX B OBJECT DESCRIPTIONS .. 39
1. The TM package .. 39
2. The attribute package ... 40
3. The battle package ... 41
4. The combat package... 43
5. The events package .. 45
6. The jlib package ... 47
7. The maker package .. 48
8. The supply package .. 49

x

APPENDIX C INSTRUCTIONS FOR RUNNING THE MODEL........................... 56

APPENDIX D CONTROL FILE KEY WORD DEFINITIONS............................... 64

APPENDIX E SAMPLE INPUT CONTROL FILES.. 75

APPENDIX F SOFTWARE AND HARDWARE USED... 83

APPENDIX G AREAS FOR POTENTIAL IMPROVEMENT OF FLEXLOGS.... 85

REFERENCES.. 88

INITIAL DISTRIBUTION LIST ... 91

xi

TABLE OF FIGURES

Figure 1 Asset Class Hierarchy Diagram. ... 10

Figure 2 Supply Package Event Diagram ... 16

Figure 3 Simple Logistics Network... 21

Figure 4 Combat Effectiveness Curve .. 23

Figure 5 Combat Effectiveness Level Curves ... 24

Figure 6 Combat Unit Stock Levels - Blue Wins.. 25

Figure 7 Stock Level at Combat Unit - Blue Loses .. 26

Figure 8 Stock Level at Forward Support Base - Blue Wins .. 27

Figure 9 Stock Level at Forward Support Base - Blue Loses ... 28

Figure 10 Stock Level at Port - Blue Wins... 29

Figure 11 Stock Level at Port - Blue Loses.. 30

Figure 12 Combat Effectiveness with Unlimited Strategic Lift.. 32

Figure 13 Combat Effectiveness with Unlimited Strategic Lift and Relaxed Supply Rules

.. 33

xii

xiii

EXECUTIVE SUMMARY

Joint Vision 2010 (JV2010) is the Chairman of the Joint Chiefs’ plan for how

military operations will be conducted in the future. One of the operational concepts put

forth in JV2010 is Focused Logistics, defined in JV2010 as the “precise application of

logistics.” To fully define what Focused Logistics will mean to US forces, the Office of

the Secretary of Defense (OSD), Program Analysis and Evaluation (PA&E) branch is

conducting the Focused Logistics Study. As part of the Focused Logistics Study, the

Simulation Analysis Center (SAC) is engaged in the Modeling Experiment in Focused

Logistics to explore how to better model logistics in the future. As a part of that modeling

experiment, this thesis develops a flexible object-oriented logistics simulation based on the

draft Conceptual Object Model of Military Logistics being developed as part of the

Focused Logistics Study. Using the conceptual object model as a starting point, the

author developed the “Flexible Experimental Logistics Simulator (FLEXLOGS).”

FLEXLOGS is an object-oriented discrete-event simulation implemented in the Java

programming language. The model treats the logistics system as a transportation network,

with the requisite rules for ordering and shipping material. The model consists of objects

representing the units involved in combat and logistics support, the transportation assets,

the material and information in the logistics system, and the network of transportation

links.

One of the key design goals of the model is flexibility so that the model can be

easily adapted to study a wide range of possible future logistics systems. Two methods

were employed to meet the goal of flexibility. First, as much flexibility as possible is built

into the design to allow the nature of the logistics network and rules for ordering supplies

to be controlled by an input data control file. Second, the software employs a modular

design so that modifications to logic contained in the computer code can easily be made.

The model is used to address the question of how combat effectiveness is affected

by the amount of supply in theater and the amount of available premium transportation.

The relationship of these two factors is shown as a three dimensional surface. To explore

xiv

sensitivity of the MOE to changes in the logistics system, the rules for re-supply among

units in theater are relaxed. The model demonstrates that this relaxation does not produce

the expected improvement in combat effectiveness. The model runs were examined more

closely to determine that the limiting factor in this scenario is premium strategic lift, so a

relaxation of theater ordering rules would have no effect. Next, the model was modified

so that strategic lift was not a limiting factor. Running the model under these conditions

revealed that relaxing the ordering rules does not necessarily improve the combat

effectiveness and, in fact, in this case made the outcome of the combat less predictable.

This thesis demonstrates that a flexible simulation can be developed from a

conceptual model and used to explore the nature of the system under study. FLEXLOGS

provides a good tool with which to explore the possible effects of future logistics systems.

xv

ACKNOWLEDGEMENTS

The author would like to thank the Office of the Secretary of Defense, Program

Analysis and Evaluation branch for funding the experience tour that made this thesis

possible. The author would like to specifically thank Mr. Jim Johnson, LtCol Charles

Mugno, USMC, and Dr. Kevin Seager for their help and guidance in developing the

model. The author would also thank Professors Arnold Buss and Gordon Bradley for

their patience and help during the writing of this thesis.

xvi

1

 I. INTRODUCTION

The United States military is current undergoing a “revolution in military affairs”

that will cause a drastic change in the way that all services conduct operations [Owens,

1995]. A number of factors have brought about these changes. First, the fall of the Soviet

Union has changed the nature of the potential enemy from a single large advisory to a

large number of possible foes. We can no longer plan on the war occurring in a specific

place under specific conditions. Our forces must therefore be more mobile and flexible

than they were during the Cold War. Second, the reduction of the threat from an easily

identifiable enemy has caused the resources available for defense to shrink over the years,

requiring the military to stretch tax dollars further. Therefore, today’s military must not

only be flexible and mobile, but also cost-effective.

Logistics is one of the key areas that must change in order to enable this

revolution. In the past, the U.S. armed forces solved logistics problems with brute force

in which large quantities of material were stockpiled in theater for planned operations,

with even larger amounts of materials being shipped into the theater at the onset of

hostilities. This method of supplying troops runs counter to the contemporary

requirements for logistics to be flexible, mobile, and efficient. Furthermore, in future

conflicts the large stockpiles of materials could be a liability rather than an asset.

In order to conduct operations with fewer supplies in theater, the same emphasis

must now be placed on logistics that is currently placed on developing and analyzing the

war plan. This increased emphasis on analysis will require that logistics simulations be

2

brought up to the capability of combat simulation. Planners and analysts need a robust,

flexible logistics simulation.

A. BACKGROUND

Joint Vision 2010 (JV2010) is the Chairman of the Joint Chiefs of Staff’s vision of

how the United States military will operate in the 21st century. The Chairman lays out

four operational concepts required for the successful conduct of warfare in the future.

One of these concepts is “Focused Logistics,“ defined in JV2010 as:

The fusion of logistics information and transportation technologies for
rapid crisis response; deployment and sustainment; the ability to track and
shift units, equipment, and supplies even while en route, and delivery of
tailored logistics packages and sustainment directly to the warfighter [Joint
Vision 2010, p24].

To further define this new concept of logistics, the Joint Chiefs published Focused

Logistics. One of the key features required to implement Focused Logistics is the

reduction of the amount of materials present in theater. This reduction helps units to

deploy more rapidly due to reduced transportation requirements. Since Focused Logistics

discusses high level concepts, more research is needed to define the technologies and

procedures that will be Focused Logistics.

 To further refine the concept of Focused Logistics, the Office of the Secretary of

Defense, Program Analysis and Evaluation (OSD, PA&E) has undertaken the Focused

Logistics Study. Through this study, OSD will lay out how the concept of Focused

3

Logistics should be implemented. In order to evaluate possible future logistics concepts,

the analysts will require some type of modeling tool [SAC briefing, 1997].

The Experiment in Modeling Focused Logistics is an effort to determine how

future logistics concepts can be modeled. The experiment has three main objectives.

First, to provide a tool that will be able to quantify the benefits and risks of Focused

Logistics. Second, to assess the suitability of currently available analysis tools for

studying future logistics concepts. Third, to develop recommendations for the logistics

model in JWARS. The second of these objectives will provide a foundation to accomplish

the other two [SAC briefing, 1997].

The modeling experiment will attempt to answer three questions about logistics

modeling. First, how do we currently model logistics? Second, how will we model

today’s logistics in the future? Finally, how will we model Focused Logistics?

Some preliminary work has already been accomplished in searching existing

models. The modeling experiment started with TACWAR 5.0, since it is the combat

model most widely used in OSD, PA&E studies. Although TACWAR does include a

simple logistics model, it may not be suitable for accurately modeling current and future

logistics. Most of the currently available logistics models contain embedded logic that

“hard-code” the logistics rules, and consequently lack the flexibility necessary for

exploring innovative logistics concepts. One of the areas that is under investigation is the

creation of a federation of models (including both combat and logistics models) using the

High Level Architecture (HLA) [Seager, 1998].

4

As an adjunct to the modeling experiment, the director of OSD, PA&E, Simulation

and Analysis Center (SAC) has requested the author of this thesis to construct an

object-oriented logistics simulation based on the Conceptual Model of Military Logistics

(COM), currently under development as part of the Focused Logistics Study [Draft COM,

1997]. The director also requested that the author conduct an initial investigation to

discover the effect of reducing stockpile size on combat effectiveness.

B. PREVIOUS RESEARCH

The literature on the specific subject of simulating the effects of logistics on

combat is very scarce. Most of the previous research found was narrowly centered on

answering a specific question and not at developing a more general method for studying a

wide range of possible scenarios and logistics solutions. The paragraphs that follow

discuss the highlights of some of this research.

A series of three Naval Postgraduate School (NPS) theses were written to provide

a tool for a wargame referee to use to determine the effect of logistics on a war. The first

of this series [Long, 1993] developed a simulation of a logistics network with the purpose

of providing logistics information to the referee and participants of a theater level

wargame. Long’s thesis provided a good starting point for this logistics referee. Two

more NPS students improved upon the original design [Halverson, 1994; Plunk, 1995] by

implementing improvements noted in the original thesis. This series of theses was useful

to the author for learning some general techniques for simulating the logistics network.

However, this author’s lack of familiarity with the modeling language chosen, MODSIM,

5

and the lack of comments in the code provided, hindered the direct application of methods

developed in these theses to the current research. Also, these theses were focused on

solving specific problems, rather that developing more generic modeling solutions. The

simulations developed were not designed to be coupled directly with a combat simulation,

but rather to be used by a human referee to manually transfer the effects of logistics from

this model to the wargame in progress.

In a thesis written in 1996, Huffaker developed a simulation, also written in

MODSIM, to demonstrate the effects of logistics on combat. His thesis focused on

computing the level of supply available at a combat unit for a given scenario. It included a

combat simulation and also a simple supply interdiction model. The model was

specifically designed to model the logistics of ground combat and used a built-in combat

and interdiction model as the source of demands.

A study of the Marine Corps’ Enhanced Transportation Service Program by

Atchesonn [1997], showed that using premium transportation, overnight airfreight in this

case, could be a cost effective alternative to carrying higher stock levels. While the study

focused on a small number of very specific scenarios, it is useful since it shows that

replacing stockpiles with transportation is both feasible and cost effective.

In his 1996 thesis, Stork was one of the first to use the Java language for discrete-

event object-oriented simulation. While the purpose of Stork’s thesis was to study how to

model sensors, it provided an excellent foundation for the use of Java as a modeling

language. In the thesis he developed the first version of “Simkit”, a toolkit for simulation

in Java.

6

The use of discrete-event object-oriented simulation in Java is not limited to

military modeling. As an example, Caoyuan Zhong, in his PhD dissertation [1997] at

Virginia Polytechnic Institute, developed a flexible model of airport operations in order to

study the effect on airport congestion of various changes in policy. Another purpose of

Zhong’s dissertation was to explore the use of Java in simulations. He found that airport

simulations also suffered from maintainability problems caused by large, procedural

languages and that this area of simulation could benefit from the use of an object-oriented

language.

While these previous simulations provide a solid background and are a good

source of general simulation methodology, none of them can be applied directly to study

the effects of Focused Logistics.

C. OUTLINE

The remainder of this thesis will document the development and use of a flexible

tool for modeling logistics. Chapter II will present an overview of the Conceptual Object

Model of Military Logistics upon which FLEXLOGS is based. Chapter III is an overview

of the implementation of the model, with detailed information contained in Appendix B

and Appendix C. Chapter IV uses the model to explore the effect of changes in logistics

on combat effectiveness. Finally, Chapter V presents the conclusions and

recommendations of this thesis.

7

 II. THE CONCEPTUAL MODEL

A. THE PURPOSE OF A CONCEPTUAL MODEL

A “Conceptual Object Model” is a high-level model of the objects present in the

system under study that identifies the major entities, relationships, and business functions.

A conceptual model is not intended to be a design for a system to simulate the real world.

Rather, it provides an organized way for an analyst to document the workings of the

system of interest and a framework for the modeler to document the system without

getting lost in needless implementation details, or restrictions caused by a particular

implementation method. Only objects necessary for understanding of the system need be

documented, not objects that are part of the overhead necessary for development of a

working simulation.

However, a conceptual model is of great use to an analyst creating a simulation of

a system. The conceptual model documents the real world objects that are of interest

providing a documented boundary to the system under study and provides an excellent

starting point for simulation software development. The use of the conceptual model by

the simulator also proves to be a synergistic benefit to the conceptual modeler. During the

implementation, the modeler can provide feedback on areas of the model he feels are

lacking.

8

B. THE CONCEPTUAL MODEL OF MILITARY LOGISTICS

The conceptual model is currently under development at the Simulation Analysis

Center. A brief outline of the draft model will be presented in the following paragraphs.

Although this version of the model is not yet complete, it provides valuable insight and a

foundation for a prototype flexible logistics model.

The draft model consists of three parts. The first part can be thought of as the

logistics system interface to the outside world, a monolithic entity that provides services to

other entities. This view allows one to define the boundary of the logistics system and

define the interface to the combatant entities. This interface consists of a military logistics

task list. The second part of the draft model consists of two object diagrams. One of

these diagrams is an entity relationship diagram, which shows how the objects in the

model interact. The other diagram is a class hierarchy diagram that shows the

relationships between the objects. The final part of the model is a series of “class cards”

that define the attributes and methods of the objects in the model. Before the task list can

be discussed, the high-level object definitions contained in Table 1 are needed.

The military logistics system is capable of the following types of tasks: Providing,

Receiving, Repairing, Transporting, and Disposing of. Note that not all of the

combinations of tasks are meaningful. The combinations that the draft conceptual object

model defines as making sense are listed in Table 2.

9

Table 1 – High Level Object Definitions

Object Definition Example
Asset Something used by an organization to accomplish

a task
Combatant,
Equipment

Supply Something that is consumed by an asset or liability Food, Ammunition
Infrastructure Fixed facilities that provide a capability Roads, Buildings
Liability Something that the military accepts responsibility

for that does not aid in the accomplishment of the
mission.

POW, Non-
Combatant
Evacuees.

Table 2 Service/Object Matrix (An ‘X’ indicates a meaningful combination of
tasks)

Asset Supply Infrastructure Liability
Provide X X X
Receive X
Transport X X X
Repair X X X
Dispose of X X X

The next part of the conceptual object model is the entity relationship diagram,

which shows how objects can interact with each other. The diagram from the draft object

model is included as Appendix A.

The Asset class hierarchy diagram is shown in Figure 1 as an example. As can be

seen from the diagram, the conceptual object model contains a large amount of detail.

This level of detail is necessary to fully document the interactions within a complex

system.

The Conceptual Model of Military Logistics is currently under development, but

still provides valuable insight into the system under study. The conceptual model also

provides a good starting point for developing a simulation of military logistics.

10

Asset

Simple AssetDynamic AssetComplex Asset

Segregated
Space

Platform WeaponSensor

Self-
propelled
Platform

Civilian
Worker

Military
Service
Member

MHE

Dependent
Platform

Person

Sub-
Organization

Figure 1 Asset Class Hierarchy Diagram – This diagram illustrates the large amount of
detail contained in the conceptual object model.

The Conceptual Object Model, while primarily intended to provide documentation

of the military logistics system at the abstract level, provides the basic framework from

which to develop a working simulation. The details of the implementation of a simulation

based on the Conceptual Object Model of Military Logistics are presented in the following

chapter.

11

 III. MODEL IMPLEMENTATION AND DESCRIPTION

A. OVERALL MODEL

The model for this thesis was developed using the Java programming language.

The choice of language was guided by the need for an object-oriented language. The

other languages that were considered were C++, Smalltalk, and MODSIM. Among the

reasons for the choice of Java were the author’s familiarity with the language, Java’s

memory management features, and the cross-platform portability of the language.

As stated earlier, the model implemented was based heavily on the Conceptual

Object Model of Logistics under development by the Simulation Analysis Center. The

model treats the logistics system as a transportation network, with the requisite rules for

ordering and shipping material. As the main thrust of this thesis is logistics, the combat

model portion of the simulation was of limited scope, and only a limited effort was

devoted to its development.

The model consists of objects representing the units involved in combat and

logistic support, the transportation assets, the material and information in the logistics

system, and the network of transportation links. The paragraphs that follow and Appendix

B will discuss the model in greater detail, with the purpose of educating the reader not

only of the operation of the model, but also of the design of the model. If the model is to

be used for its intended purpose of studying future logistics, then future users may need to

modify some of the logic embedded in the classes.

12

Since the model has been designed to give a great amount of flexibility to the

modeling of logistics, it was named The Flexible Experimental Logistics Simulator

(FLEXLOGS).

B. STRATEGY FOR FLEXIBILITY

Since the genesis of this project was the need for a flexible logistics simulation, one

of the major underlying design goals was flexibility. This flexibility was gained through a

two pronged approach. The ultimate in flexibility would be to develop the software in

such a way that any changes in the system under study could be implemented in the model

by changing data input only. This is a worthy but unachievable goal. The second method

of achieving flexibility is to design the software such that it is easily modifiable.

FLEXLOGS employs both approaches to flexibility. The structure of the logistics

network, stock levels, re-order points, the types and number of transportation assets, and

others are all controlled through data input. In addition, its object-oriented design enables

the easy addition of features. In a thesis studying the feasibility of supporting a Marine

Expeditionary Unit from a sea base, Stuart [1998] was able to readily adapt the model to

his problem.

When flexible implementation was too difficult or time did not allow, behavior of

the model was coded into the computer program. Things that were judged by the author

to most likely be changed in the course of running the model were segregated into

separate Java classes for ease of modification. Examples of this include the rules for

ordering supplies (i.e. who orders what from whom), the distributions of the various

13

random variables used in the simulation, the method of tracking and picking transportation

assets needed for a shipment, and the interface to the combat model. The Java classes,

which implemented this flexibility, are discussed with the rest of the simulation in the next

section and Appendix B.

Another strategy was to try to make data internal to the model visible. A number

of classes were developed which allow the analyst to log certain attributes of the objects

to a file for further analysis.

C. OBJECT DESCRIPTIONS

The Java programming language organizes the various classes in a program into

packages that separate them into functional groups. The paragraphs that follow will

discuss each package at a high level. The various member classes of each package are

discussed in Appendix B. Classes that provide only minor functions in the model will not

be discussed. The full documentation and source code for all of the packages is too

voluminous to include in this thesis, but is available from the author.1

1. Package Descriptions

FLEXLOGS consists of eight Java packages summarized in Table 3. The TM

package contains the time master, which controls the scheduling of events in the time step

model. The attribute package contains classes that are used to track and log various

1 The author may be contacted via e-mail at John@Ruck.com or on the world
wide web at http://www.John.Ruck.com

14

attributes of the entities in the model. The battle package is a simple combat simulation

developed for this thesis which is used to generate the logistics demands and also used to

determine the winner of the conflict for use as a measure of effectiveness. The combat

package contains those classes that are the interface between the logistics simulation and

the combat simulation. The events package is a common location for various information

messages which are passed between entities in the simulation. The jlib package contains

various utility or library classes. The maker package contains classes that are used set up

and run the simulation based on an input data file. Finally, the supply package contains the

classes that make up the heart of the logistics simulation. The event diagram for the

supply package is shown in Figure 2.

15

Table 3 - FLEXLOGS packages

Package Functional description

TM The time master responsible for the scheduling and execution
of simulation events.

Attribute Tracks and logs the values of entity attributes.

Battle A simple combat simulation.

Combat The interface between the logistics simulation and the combat
simulation.

Events Classes that support information passing between objects in
the simulation.

Jlib Utility and library classes

Maker Processes an input control file and runs the model.

Supply The actual logistics simulation.

D. RUNNING THE MODEL

An input data file controls the operation of the model. The model can be run

either on a single computer or in a client/server mode on multiple computers. Detailed

instructions for running the model are contained in Appendix C. Two examples are given

to illustrate the operation of the model. The output of the model is a file containing the

values of any variables from the run along with the number of blue and orange wins. The

output file is suitable for import into a statistics package such as Microsoft Excel or Math

Soft’s S-Plus.

16

consumptionEvent

checkStock

receiveShipment arrive

transportationReturn

beginMoveTo

ship
initiateRequisition

receiveRequisition

[if below
reorder point]

[able to fill]

[if transportation available]

[able to
fill orders]

[unable
to fill or
backorder]

[requisition waiting]

[if home]

[if not
home]

[split requisition]

Figure 2 Supply Package Event Diagram – This figure shows the relationship
among the simulation events for objects contained in the supply package. The event
diagram documents the event scheduling logic contained in the simulation.

17

 IV. AN ANALYSIS OF THE EFFECT OF LOGISTICS ON THE

OUTCOME OF COMBAT

A. METHODOLOGY

1. Exploratory Analysis

The purpose of this research is not to predict the precise effect of exact logistics

parameters on a particular battle, but rather to explore the general effects of logistics.

Exploratory analysis is a term described in a number of publications by the RAND

corporation [Banks, 1992] [Brooks, Banks, and Bennett, 1997]. These publications

describe exploratory analysis as an alternative to the normal use of models in studies.

Normally, models are used in a predictive manner. Furthermore, it is typically assumed

that the model can be validated, so that for given input data, the output of the model is an

accurate prediction of reality. These predictive studies usually focus in on a narrow range

of optimal solutions.

What RAND proposes, and the approach followed in this research, is to use the

model to explore a large solution space in order to get an idea of how the parameter under

study behaves in a broad range of conditions. In this research it is important to explore

this broad area since even the general nature of the relationships among logistics factors

and combat effectiveness are not known. Another reason for the need for exploratory

analysis is the inherent stochastic nature of systems such as combat or even simple

18

transportation networks. An optimization approach would typically emphasize a region

around an “optimal” solution based on single expected values of the input variables. The

method of exploratory analysis pursued in this thesis allows the model to directly take into

account the stochastic nature of the problem and to identify regions in the solution space

where changes in the outcome of a battle may more dependent on chance than on small

changes to the input variables.

2. Measures of Effectiveness

Several measures of effectiveness (MOE) were considered for use in evaluating the

effect of logistics on combat using the simulation developed by this research. One of the

measures considered was the amount of time a combat unit in the simulation has one or

more supply items below some designated critical level. While this MOE is easy to

measure in the model and easy to interpret, it has a number of shortcomings. First, the

critical level of supply is an arbitrary choice by the modeler (or in real life, by the

commander.) An invalid choice of this parameter could cause the MOE to be

meaningless. Second, the fact that a particular unit’s supply falls below the critical level

could have no impact on the outcome of the war.

Superior measures of the effectiveness of a combat logistics system involve how

well the system supports combat rather than how well the supply system acts as a supply

system. For these reasons, the MOE chosen for the analysis portion of this research was

the number of times the Blue force wins the simulated war. This choice of MOE forced

19

the development of a simple combat model not only to generate the demands for the

supply system, but also to determine the winner of the war.

3. Choice of Input Variables

One of the goals of Focused Logistics is to reduce the amount of material in

theater. Thus, the amount of supplies stocked at combat units was deemed a good choice

for an independent variable for the model. In order to reduce the logistics footprint under

Joint Vision 2010, something must be substituted in place of the stockpiles of material.

One of the substitutes mentioned in Focused Logistics is the improvement of information

technology to aid the logistics system. However, the time available to develop the model

did not allow for a measure of information technology to be included in the model.

Another available substitute for having material in place, is the ability to rapidly

ship the material to where it is needed. Therefore, another substitute for material in place

is premium transportation assets. The modeling of the number of certain types of

transportation assets was well within the scope of the model developed in the allotted time

and therefore is a good choice as the second independent variable.

The model analysis conducted as part of this research will explore the effect of

varying stockpile levels and the availability of premium transportation, specifically airlift

on the outcome of the simple combat simulation.

20

B. RESULTS

The first analysis conducted uses a combat model that simulates a simple battle.

Units on each side advance in the direction of the enemy objective. If a unit detects an

enemy unit, the units fight. When a unit reaches its enemy’s objective, that unit’s side is

declared the winner. Demand for supplies is generated when units fight. While this

combat model shows the relationship between stockpile size and combat effectiveness, the

effect of premium transportation is not demonstrated. An investigation into the model

reveals that the typical combat unit in the simulation is engaging the enemy less than once

every four days. Therefore, the unit can easily be re-supplied by slow transportation prior

to the next time the unit engages in combat. Since modifications to this combat model did

not produce any increase in combat frequency, another combat simulation, described

below, was developed to allow direct control over the intensity of combat.

The newly developed combat model is designed to allow direct control over

combat frequency. Each unit has a probability of fighting once per period. Both the

probability of fighting and the length of the period can be set when the units are

constructed. If a unit fights, it consumes a randomly determined amount of supplies. A

more detailed description of the combat model is contained in Appendix B.

The logistics network used to develop the relationship between combat

effectiveness and stockpile size and amount of premium transportation is shown in Figure

3. In the simulation runs used, there were a total of 8 combat units. Each combat unit

had a 50% probability of fighting about once every 24 hours. These times were normally

21

distributed with a mean of 24 hours and a standard deviation of 0.5 hours. If the unit

fought, it consumed approximately 2000 cases of bullets. The amount consumed was

normally distributed with a mean of 2000 and a standard deviation of 100. If the blue unit

tried to fight while below the critical supply level, then blue was declared the loser. If the

simulation ran for 30 days without blue losing, then blue was declared the winner.

Sufficient sealift and land transportation was provided so these modes were not a limiting

factor.

The Logistics
Network

CONUS

Port

Forward
Support

Combat
Units

Figure 3 Simple Logistics Network - This network was used to generate the data
necessary to study the relationship between combat effectiveness, stockpile size, and
amount of premium transportation. The figure shows the supply ordering relationships
between the units in the simulation. The demand for supply is generated from combat by
the Combat Units.

22

Figure 4 shows a three dimensional perspective of the curve generated. The same

curve is shown as a set of color-coded level curves in Figure 5. In both figures, blue

represents the region where the blue side always wins. The red represents the region

where the blue side always loses. Other colors represent the transition region where each

side won some of the battles. On the level curves it is worth noting that at a high enough

level of stockpiles, blue can win without use of premium transportation. As the amount of

premium transportation available is increased, the size of the stockpiles required

decreases. This appears to be a near linear relationship until airlift reaches the saturation

point where additional airlift does not reduce the stockpile requirements.

Next, in order to determine the effects of a different logistics scheme, the

simulations were re-run with a slightly modified logistics scheme. If a unit (a combat unit

or forward support unit) is unable to get supplies from its normal supplier, it is allowed to

get them from the closest unit that has supplies available. Since the relaxed rules would

allow a unit an alternate source of supply, the author originally believed that this relaxation

would allow the level curves to shift down and to the right so that the same level of

combat effectiveness would be achievable with smaller stockpiles and less premium

transportation. However, the curves generated with this modified system were not

significantly different from the original curves

23

Combat Effectiveness

Figure 4 Combat Effectiveness Curve – This figure illustrates the effect of
amount of airlift available and level of supplies in theater on the number of times the blue
force wins. The blue region represents the region of the graph where blue always wins.
The red region represents the region where red always wins. Other colors represent the
transition region where each side wins some of the battles.

24

0 200 400 600

Level of Airlift

500

700

900

1100

1300

1500

Le
ve

l o
f S

up
pl

y
Combat Effectiveness

Figure 5 Combat Effectiveness Level Curves – This figure is a color-coded level
curve representation of the same data as the previous figure. As in the three dimensional
graph, the blue region is where blue always wins, the red region is where red always wins,
and other colors are where both sides win some of the battles. The graph demonstrates
that blue can always win even without premium transportation if enough supplies are
present in theater. As the amount of premium transportation is increased, there is a near
linear decrease in the amount of supplies needed to win until the airlift reaches the
saturation point. Addition airlift beyond this saturation point causes no further reduction
in the amount of supplies needed.

25

In order to determine the cause of these unanticipated results, the stock levels for

each type of supply node over the length of a typical battle were examined. Figure 6

shows the stock level at a typical combat unit in the case where the blue side always wins.

The horizontal line at 2000 represents the stock level that is considered critical. The

supply level drops below the critical level whenever the unit fights, but is quickly restored

above this level prior to the next combat.

0 100 200 300 400 500 600 700

Time

0

500

1000

1500

2000

2500

A
m

ou
nt

Stock Level at Combat Unit (Blue Wins)

Figure 6 Combat Unit Stock Levels (Blue Wins) – This graph shows that in the
case where the blue side wins, the stock levels drop below the critical level, but the unit is
resupplied prior to the next combat.

26

Figure 7 shows the stock level at a typical combat unit in the case where blue

always loses.2 This graph is not greatly different from the case where blue won, except

that the time that the stock level is below the critical level increases, slightly as the war

goes on.

5 30 55 80 105 130 155 180

Time

0

500

1000

1500

2000

2500

A
m

ou
nt

Combat Unit (Blue Loses)

Figure 7 Stock Level at Combat Unit (Blue Loses) – The graph for the case
where blue loses in not drastically different from the previous case, except that the time
below the critical level is increasing as the war progresses.

2 Note the change of time scale between the case where blue wins and where blue
loses since the data logging stopped as soon as blue lost.

27

Since the problem is not obvious from examining the stock levels at the combat

unit, one of the forward support bases will be examined. Figure 8 shows the stock levels

at the forward support base for the case where blue wins. The graph shows the levels

appear to stay safely above the zero level. Whenever levels dip close to zero, they are

quickly replenished by airlift.

0 100 200 300 400 500 600 700

Time

0

5000

10000

15000

A
m

ou
nt

Forward Support (Blue Wins)

Figure 8 Stock Level at Forward Support Base (Blue Wins) – This graph
shows that in the case where blue wins the stock levels at the forward support base stay
safely above zero.

28

For the case where blue loses, Figure 9 shows the stock level at a forward support

base. In this case, the stock levels do reach zero, but they recover quickly. There is not

obvious cause of the logistics system failure at this level.

5 30 55 80 105 130 155 180

Time

0

5000

10000

15000

A
m

ou
nt

Forward Support (Blue Loses)

Figure 9 Stock Level at Forward Support Base (Blue Looses) – The stock
levels at the forward support base for the case where blue looses show that while the
levels do reach zero, they quickly recover.

Figure 10 shows the stock levels at the port of debarkation for the case in which

blue wins. This graph shows that airlift is able to maintain stock at a usable level until the

sealift arrives. Figure 11 shows that in the case where blue loses, the stock level at the

29

port is quickly used and there is insufficient airlift available to replenish the port while

waiting for the sealift to arrive.

0 100 200 300 400 500 600 700

Time

7000

12000

17000

22000

27000

32000

A
m

ou
nt

Port (Blue Wins)

Figure 10 Stock Level at Port (Blue Wins) – This graph shows that airlift is able
to maintain the stock levels until the arrival of the supplies via sealift.

30

30 80 130 180

Time

0

10000

20000

30000
A

m
ou

nt

Port (Blue Loses)

Figure 11 Stock Level at Port (Blue Loses) – This graph illustrates that without
sufficient strategic airlift, the supply level at the port quickly reaches zero causing a stock
shortage throughout the theater.

This series of graphs show that the cause of blue losing was not an intra-theater

transportation problem, but rather a problem with lack of strategic airlift. This explains

why the relaxation of the intra-theater supply rules had no effect on the amount of airlift

and stock required for success.

Next, to further investigate the nature of the effect of a change in supply policy in

the theater, the model was modified by adding sufficient strategic airlift and only varying

31

the amount of in theater airlift. Figure 12 is a contour plot of combat effectiveness for the

case where there is unlimited strategic airlift and normal re-supply rules. Figure 13 shows

the results when the re-supply rules are relaxed to allow units to order from nearby units

when unable to get supplies from their normal supplier. These curves show that there is

little change in the results by allowing the relaxed re-supply rules, however the relaxation

did appear to increase the variance of the results. This indicates that in the scenario under

study, the relaxation has no benefit and may cause the outcome of the battle to become

less certain.

This chapter demonstrated how FLEXLOGS could be used to show the

relationships between combat effectiveness, stockpile size, availability of premium lift, and

supply system rules for a specific scenario. This section also demonstrated the ease with

which the model could be modified and data gathered to allow not only the original

question to be explored, but also analysis of issues raised when the results of the original

study were counterintuitive.

32

0 20 40 60 80

Airlift

500

700

900

1100

1300

S
up

pl
y

Le
ve

l

Combat Effectiveness
Maximum Strat Lift

Figure 12 Combat Effectiveness with Unlimited Strategic Lift – This curve
shows the combat effectiveness when unlimited strategic airlift is available. Blue indicates
where blue always wins, red indicates where red always wins, and other colors indicate the
region where both sides win some of the battles. The shape of this surface is very similar
to the surface generated by varying the amount of all types of airlift.

33

0 20 40 60 80

Airlift

500

700

900

1100

1300

S
up

pl
y

Le
ve

l

Combat Effectiveness
Maximum Strat Lift, Relaxed Ordering Rules

Figure 13 Combat Effectiveness with Unlimited Strategic Lift and Relaxed
Supply Rules – This curve shows the combat effectiveness when strategic airlift is
unlimited and units are allowed to order from nearby units if they are unable to be supplied
by their normal supplier. The shape of the curve is basically the same as the previous case
without relaxed supply rules, although the region where neither side always wins is larger.
This comparison shows that, in the scenario studied, the relaxation of supply rules does
not improve combat effectiveness and makes the outcome of the battle less certain.

34

35

 V. CONCLUSIONS AND RECOMMENDATIONS

This research has developed a useful tool for exploring the future of military

logistics. FLEXLOGS provides this tool through flexible design. By virtue of this

flexibility, a wide range of potential future logistics systems can be studied to see their

effect on combat effectiveness. One of the keys to this flexibility is the use of loose

coupling to the combat model or other model used to generate the demands on the

logistics system.

In this thesis, the nature of the relationship between stockpile levels, premium

transportation, and combat effectiveness has been analyzed. In the course of analyzing the

scenarios used for these demonstrations, the ability of the model to be rapidly modified to

explore new questions was clearly shown. Data needed to explain counterintuitive results

were easily obtained from the model.

The model presented in this thesis is only a starting point. Appendix G contains a

list of potential improvements that were identified during the development of FLEXLOGS

for which there was insufficient time to include in the model. These improvements are of

a general nature and should be prioritized and added to the model by future researchers.

Additionally, the exact nature of the studies to be done using the model should be

identified so that the model can be evaluated and, if necessary, modified.

This thesis demonstrates that a flexible simulation could be developed from a

conceptual model with a relatively small level of effort. Also, by following sound object-

oriented design techniques, the resultant tool can be made very flexible.

36

FLEXLOGS provides a flexible tool for the analyst to explore what Focused

Logistics means to our forces. The model also demonstrates that a combat model and a

logistics model can be integrated in a way that allows the combat model to be replaced

with a minimum of effort.

37

APPENDIX A CONCEPTUAL OBJECT MODEL DRAFT ENTITY

RELATIONSHIP DIAGRAM

[Draft COM, 1997]

38

39

APPENDIX B OBJECT DESCRIPTIONS

This appendix provides a detailed description of the objects in each package of the

simulation. In the following paragraphs, the actual class names are indicated by bold type.

1. The TM package

The TM package contains the classes that are responsible for the scheduling and

execution of the simulation. The classes in this package obviously have no counterparts in

the conceptual model. Additionally, this package contains a generic priority heap class

(Heap) which is used in the simulation both as the foundation of the time master and for

holding lists that must be prioritized. (e.g. A heap for backorder processing).

 The interface Scheduler must be implemented by any object that will have events

scheduled with the time master. The time master is made up of the classes TimeMaster,

EventHeap, and JEvent. Each object in the simulation that schedules events must have a

reference to the instance of time master. The TimeMaster class contains an EventHeap

that contains the events to be processed (JEvents). The TimeMaster class has methods

that implement various ways to schedule new events and to cancel pending events. Once

the initial events are scheduled, the simulation is started by calling the start() method of

the TimeMaster. The TimeMaster exits, stopping the simulation, when either no more

events are waiting on the heap, a specified number of events has been executed, or an

object calls the flush() method emptying the event heap.

The classes Heap and HeapEntry are used as the basis for the EventHeap (which

is why they were placed in this package and not elsewhere.) This generic priority heap is

40

also used in other classes to store entities that require sorting by some priority, such as

backordered requisitions.

2. The attribute package

The attribute package consists of classes that are used to track the values of

attributes of the various objects in the simulation. Some examples are the number of

personnel assigned to a unit and the amount of each type of supply held in stock by a unit,

and other such information. The purpose of storing this information in the attribute

classes is to allow the values to be tracked outside of the object that holds them. The

package also contains classes that are used to write the value of these attributes to a log

file for later analysis.

The values of the attributes themselves are stored by the classes IntAttribute and

DoubleAttribute, derived from the abstract class Attribute. All Attribute objects are

identified by a name, given when the object is constructed. These classes also contain

methods to set and get the value of the attribute.

The value of an attribute is made visible to other objects in the simulation by

implementing an event-listener model. The event-listener model is discussed in the events

package. Attribute, and its subclasses, are the source of AttributeChangeEvents. Any

object that requires notification of an attribute change, implements the

AttributeChangeListener interface and then must register with the Attribute in order to

be notified of the change. The class DataLogger in the attributes package implements the

listener interface and records the values of the attribute for which it is registered to a data

41

file for later analysis. The DataLogger can also record the values of a

CoordinateAttribute, which is derived from the Coordinate class, used to track the

location of an object. Both the Coordinate and the CoordinateAttribute are contained

in the jlib package.

In order to make management of a large number of attributes in a class easier, the

Attributes interface was developed. Any class that has a number of attributes should

implement this interface. The methods of the Attributes interface allow an object to gain

a reference to an attribute by calling the getAttribute() method and referencing the

attribute by its name. An implementation of the Attributes interface,

AttributeContainer, is also provided in the attribute package. A class with many

attributes can have an AttributeContainer in order to delegate attribute management.

This class, in addition to the methods from the Attributes interface, has methods to add

attributes to the container.

The final class in the attribute package is the WinLogger. This class is a

WinEventListener (an interface in the events package) and logs the results of a war to a

file, recording the winner and the length of the war.

3. The battle package

The battle package contains classes that provide the infrastructure for a combat

model, although the actual implementation of the model is contained in the combat

package.

42

Any class whose instances will participate in the war simulated by the battle

package must implement the Combatant interface. This interface defines the minimum

combat related events that a combatant must recognize. It also contains methods that

provide the information necessary for interaction with the Referee class. In addition, any

class implementing the Combatant interface must have a method that provides a

homogenous Lanchester aimed fire coefficient used to resolve the outcome of battles.

The Referee class contains the logic necessary to adjudicate the detection of

objects by each other on the battlefield. It is responsible for determining the detection

times for all combatants in the simulation. The Lanchester class contains methods that

are used to calculate the length of a battle along with remaining force strengths. This class

uses simple homogenous force, aimed fire Lanchester equations for calculations. [Taylor,

1983] A more complex method of calculation was not chosen since the combat portion of

this simulation was added simply as a way to generate logistics demands and to provide a

measure of effectiveness for logistics. Based on these calculations, the results of a battle

are stored in a class called BattleResults for later use. This class was necessary since the

results of the battle are calculated at the beginning of the battle, but are not needed until

the conclusion of the battle to update the state of the entities involved. In order to provide

an ending point for a war, the Objective class was developed. Objective implements the

Combatant interface so that other combatants can detect it. When a combatant detects

the Objective, that combatant is declared the winner of the war.

The final class in the battle package is the OrangeLogistics class. This class is

used to take the place of a complex logistics model for any combatant that is considered

43

unconstrained by logistics in the simulation. It implements the Logistics interface in the

supply package, however, any query of stock levels simply returns a number indicating an

unlimited quantity.

4. The combat package

The combat package is the interface between the logistics and combat simulations.

It contains interfaces that provide the logistics simulation with its view of the combat

simulation. The class that implements the combat simulation is also contained within this

package.

Any class that will be used to generate the demands seen by the logistics simulation

will need to implement the CombatUnit interface. This interface is how the logistics

simulation communicates with the combat simulation. A CombatUnit is the source of

ConsumptionEvents, to be discussed later in this section, and therefore extends the

ConsumptionEventSource interface. A CombatUnit also processes

CriticalSupplyEvents, which is discussed in the events package. Finally a CombatUnit

is a Scheduler, part of the TM package, since it can have simulation events scheduled.

The basic coupling between the logistics and combat simulation is through the

passing of ConsumptionEvents by the CombatUnit, indicating that an amount of a

certain supply has been consumed. The CombatUnit is informed when a supply has

reached a critical level by receiving a CriticalSupplyEvent. The details of the different

types of critical supply will be discussed in the events package.

44

The CombatUnitImpl class provides a basic implementation of the CombatUnit

interface, including the methods needed for sending ConsumptionEvents and listening to

CriticalSupplyEvents. Additionally, the CombatUnitImpl provides an event called

consume() that once scheduled will cause a fixed amount of a single type of supply to be

consumed every 8 hours. This feature was included for testing of the logistics model. The

class TestCombatUnit extends this functionality by allowing the period to be changed

and was also used during model development for testing.

Also included in this package is an implementation of a simple combat model. The

design of this model is only briefly discussed since it is not the major thrust of this research

and was only developed to produce logistic demands and to provide a win/loss

determination for use as a measure of effectiveness. The FlagCombatUnit extends the

CombatUnitImpl (and therefore implements the CombatUnit interface), implements the

Combatant interface from the combat class, and the WinEventSource interface which

will be discussed in the events package. The FlagCombatUnit will proceed in the general

direction of its Objective. If it detects an enemy FlagCombatUnit (as determined by the

Referee) it will stop and fight. The Lanchester class determines the outcome of the

battle. The winner continues moving to the Objective after a delay, the loser retreats

away from the Objective. When a FlagCombatUnit detects the enemy Objective it

stops the simulation and fires a WinEvent that indicates which side of the conflict won.

Methods to generate any random variables needed by the combat simulation are contained

45

in the Dist class. These distribution methods are contained in one class to allow easier

modification of the distribution types.

StressCombatUnit is another implementation of the CombatUnit interface. This

class was designed to give a higher combat tempo, and therefore higher consumption

rates, than the other implementations provide. In the StressCombatUnit, each unit has a

chance to fight once every time period. The probability of fighting and the mean period

time can be set when an instance is constructed. If the unit fights, it consumes an amount

of supplies chosen from a distribution that is normally distributed with a mean of 2000 and

a standard deviation of 100. If a unit fights while a CriticalCombatEvent is active, then

blue is declared the loser. If blue has not lost by 720 hours (which is currently hard coded

in the constructor), then blue is declared the winner. The StressCombatUnit was

developed to give a more complex demand pattern than the CombatUnitImpl, and to

allow more control over the demand pattern than the FlagCombatUnit.

5. The events package

This package contains the various classes that are used to pass information

between classes in a loosely coupled way. This method of information passing is called

the event-listener model. In the event-listener model, there are two interfaces present.

The first interface is implemented by the source of the information and is the

<event name>EventSource (where <event name> is replaced by the name of the event).

The EventSource interface requires a method to add listeners to the list of objects to be

notified of the event and a method to remove listeners. Also, the class implementing this

46

interface must have the methods to actually create the events and notify the objects on the

listener list. The <event name>EventListener interface requires a method that will be

called by the EventSource when the event occurs. This method in the implementing class

then takes whatever action is appropriate for the event. The final part is the

<event name>Event class which is used to contain the information to be passed to the

listener. The goal of the event-listener model is to allow the source classes to make

information available to other classes without having knowledge of which classes may be

listening until the method to add listeners is called at runtime [Buss, 1998 OA4333 class

notes].

The first type of event defined in this package is the CriticalSupplyEvent. This

event is used to notify a listener that a type of supply has reached a critical level. Two

types of CriticalSupplyEvents are defined. The CriticalMobilityEvent indicates that

the effected unit cannot move. The CriticalCombatEvent indicates that the level of a

type of supply is a level that the unit should not initiate combat. What types of supply are

connected to what type of CriticalSupplyEvent is determined when the supply types are

created using the SupplyType class, which is part of the supply package.

The second type of event is the WinEvent. A WinEvent is generated when one

side of a war is declared the winner. The event contains the winning side, the length of the

war, and a remark. This event is used by a simulation to tally a win-lose scoreboard.

The final type of event, while modeled after the event-listener model, has a slightly

different purpose. A means was needed to pass data between the combat and logistics

models in a loosely coupled manner. The InformationMessage class and the two classes

47

derived from it, the DataMessage and RequestMessage accomplish this task. One way

these messages are used is for any class to call the getData() method of an

InformationSource to request the current value of some attribute. The requestor passes

the InformationSource a RequestMessage. The getData() method returns a

DataMessage with the requested information. This method of getting information has the

advantage of only requiring the requesting class to know that the class it requires

information about is an InformationSource. The disadvantage is that the availability of

the data cannot be checked until runtime. In this simulation the InformationSource is

used by the CombatUnit to get information about the location and force strength from

the Logistics.

Any class willing to accept unsolicited DataMessages implements the

InformationAcceptor interface. This allows one object to update information in another

object in a loosely coupled way. This is used in the simulation to allow the CombatUnit

to update the position and force strength of the Logistics. The InformationSource and

InformationAccepter interfaces were used in this simulation to make a future conversion

of the interface to the High Level Architecture (HLA) easier.

6. The jlib package

This package contains miscellaneous utility classes that are used in the simulation,

but did not seem to fit cleanly in any other package.

The Coordinate class is used to store any two-dimensional position information

used by entities in the simulation. It also contains methods for performing calculations on

48

position data (e.g. the distance between two points) [Buss, 1997 – OA3302 class notes].

The CoordinateAttribute extends the Coordinate to allow AttributeChangeEvents to

be generated whenever the position is changed. This is used for tracking the positions of

the units in the simulation.

The Quadratic class contains a method to solve a quadratic equation and is used

by the Referee in detection calculations [Buss, 1997 – OA3200 class notes]. The Utils

class contains stand-alone methods used in various parts of the simulation.

The RuckRandom class extends Java’s built in Random class to add more

distributions.

7. The maker package

This package contains classes that are used to make running the model simpler.

None of these classes are required to run the model, all of the objects needed could be

instantiated in the main method of a Java class. The classes of the maker package allow

the model to be controlled via an input control file. This section provides a brief

description of these classes; for information on how to set up a run the model using these

classes see paragraph III.D above.

The ModelMaker class takes an input control file and in its constructor parses the

file, creats the objects as directed by the input data, then runs the model. After the model

run is complete, the winner of the simulation can be determined by testing the blueWin()

and orangeWin() methods. The input lines are parsed using the TokenReader class. The

ModelDriver class is used to conduct multiple runs of the model. The ModelDriver

49

understands addition key words that allow the user to set up the number of replications, as

well as vary any number of object parameters.

In order to be able to distribute the computations of the model over a number of

networked computers, classes were developed to control execution of multiple runs over a

network. The ModelServer class takes the same input control file as ModelDriver, but

instead of running the ModelMaker sequentially on the local machine, it directs the

execution on multiple machines by any number of ModelClients across a network.

8. The supply package

This package contains the classes that make up the main body of the logistics

simulation. Table 4 is a summary of the interfaces in the supply package. The major

classes of the supply package are shown in Table 5. The classes in this package represent

a logistics system. Some of the classes represent a transportation network; others

represent the organizations responsible for the various logistics functions. There are also

classes that represent the information and material in the system.

Table 4 - Supply package interfaces

Interface Description

Location A place where an Asset can be located.
Logistics An object that provides logistics functions to a CombatUnit.
MotorPool Manages the transportation assets of a SubOrganization.

50

Table 5 - Supply package classes

Class implements extends Description

Asset none none Something that is used to
accomplish a task.

Dist none none Contains the random variants for
objects in the supply package

Link Location none A route between two Nodes.
LogisticsKnowledgeBase none none A database that contains rules to

relate suppliers to customers.
MotorPoolImpl none MotorPoo

l
Manages Transportation for a
SubOrganization.

Node Location none A node in the transportation
network.

Requisition none none Represents both the request for
supplies and the supplies
themselves when in transit.

Site None none A container for the network
defined by the Nodes and Links.

SubOrganization None Asset The logistics functions of a unit.
SupplyType None none Defines the various commodities

in the supply system.
TransType None none Defines a unique type of

transportation asset.
Transportation None Asset A transportation asset.
VariableLink None Link A Link whose distance depends

on the location of the end Nodes.
The discussion of the supply class will start with a description of the classes that

represent the logistics network. The Site class is used as a container for the logistics

network. In the conceptual model, the Site could contain other Sites and Assets could

exist directly in a Site. However, in the simulation implementation, the Site only contains

the Nodes. The Node represents a point location in the logistics network. The location of

the Node is determined by an instance of the Coordinate class. A Node may be moved

during the simulation by changing the position of its Coordinate. The class Link

51

represents a path between two Nodes over which Transportation can move. The length

of the Link is set when the Link is instantiated. Links can represent air routes, roads, sea

routes, rail lines, and other types of routes. In order for a Transportation object to move

on a Link, the transportation modes must be the same. A VariableLink, which is a

subclass of Link, is a Link whose length is determined by the straight-line distance

between its end Nodes. The VariableLink is used for routes between Nodes that will be

moved during the course of combat. The Node class and the Link class both implement

the interface Location. A Location is any object on which an Asset, to be discussed

below, can exist.

The next group of classes in the supply package represents objects that are

modeled as assets in the conceptual model. The parent object is called an Asset. The

Asset represents things that are used to accomplish a task, but that are not consumed. An

Asset exists at a Location and is on one side of the conflict (i.e. Orange or Blue). The

first class derived from Asset is the SubOrganization. A SubOrganization is a unit that

performs the logistics functions in the simulation.3 In the simulation, the

SubOrganization is the class that contains most of the events and logic for logistic

actions. An event diagram for the supply package is shown in Figure 2.

SubOrganization acts as direct logistics support to a CombatUnit, and can also

represent supply sources not directly associated with a specific CombatUnit.

3 The term SubOrganization is an artifact of the conceptual model, which
contained a much more complex representation of military units.

52

SubOrganization implements the Logistics interface. The Logistics interface is

implemented by any class that can provide logistics support to a CombatUnit. The

SubOrganization stores information about the stock status of the unit, the number of

personnel assigned, and the location of the unit.

The other class that is derived from Asset is the Transportation class. A

Transportation object can move on a Link and carry filled Requisitions. Attributes of

the Transportation asset, such as cargo capacity, speed, and transportation mode, can be

fully specified when the object is instantiated so that the Transportation class can

represent any type of transportation. In the current version (3.x) of FLEXLOGS an

instance of Transportation can only carry a single Requisition.

The interface MotorPool is used to manage the transportation assets for a

SubOrganization. The MotorPool is required to be able to store and construct

Transportation objects, as well as to retrieve a Transportation entity suitable for

shipping a given Requisition for the SubOrganization. These functions were

implemented as an interface to allow the method of managing transportation in the

simulation to be easily modified. The MotorPoolImpl class provides an implementation

of the MotorPool. In this implementation, each SubOrganization has a number of

Transportation assets assigned to it. When a Requisition is shipped, the MotorPool

first selects the mode of transportation from a default list based on the priority of the

requisition. The modes are checked in an order defined in the SupplyType class

discussed below. The MotorPoolImpl selects a Transportation asset that is a

53

compatible mode for the Requisition starting with the largest available and working down

until a minimum percentage of the capacity is used (currently 50%). If a single asset

cannot carry the whole Requisition, then the Requisition is split and shipped in multiple

Transportation objects.

A number of classes are necessary to implement the MotorPool. The

MotorPoolImpl class stores the Transportation objects in an array of ModePools. A

ModePool is all of the Transportation assets that are of the same mode (e.g. Air or Rail).

The ModePool stores the assets in an array, sorted by size, of SubMotorPools. A

SubMotorPool is all of the Transportation assets that are of the same TransType, in

other words have the identical attributes. The TransType class holds a description of the

identical assets. This number of classes to implement the MotorPool may seem large,

however, the method of hierarchical storage was necessary to implement the logic to

choose the desired size and mode of Transportation.

The Requisition class is used to represent both the data when a request for

supplies is initiated and the material itself while in transit. The Requisition contains

information such as the amount ordered, the minimum acceptable fill quantity, to whom

the material should be shipped, the order time and priority, whether backordering is

allowed, and the amount of material attached to the Requisition. Instead of limiting the

simulation to an arbitrary list of commodity types, such as the ten supply categories, a

SupplyType class is used to represent the different items in the simulation. This allows

the level of detail of supply items to be controlled at run time. The SupplyType class

54

contains information about the item it is representing including, the volume per unit of

issue, the density, a list of preferred transportation modes4, whether the type is critical to

combat or mobility, and the name of the item.

The final two classes in the supply package are part of the strategy for flexibility

built into the model. The Dist class, like the Dist class in the combat package, holds all

the methods for generating random variants for the events in the supply package. The

LogisticsKnowledgeBase is a database that is used to determine from where a

SubOrganization should order. The supply source is determined based on who is

ordering, the SupplyType ordered, whether the order is high priority, and the amount

ordered. Methods in LogisticsKnowledgeBase allow the supplier-customer relationships

to be established at runtime so that different schemes can be tested easily.

4 The current implementation of SupplyType contains a default mode priority list,
which cannot be changed at runtime.

55

56

APPENDIX C INSTRUCTIONS FOR RUNNING THE MODEL

An input data file controls the operation of the model. This appendix discusses

how a typical run should be set up and executed. The use of the model on a single

computer will be covered in detail, followed by a section that explains the differences for

use of the model in a client/server environment. The simulation runs used to gather the

data for this thesis are used as examples.

The basic steps in running the model consist of setting up the input control file,

executing the runs, then importing the results into a software package for analysis. The

input control file consists of lines that begin with a “key word” followed by data needed to

process that key word. Appendix C contains definitions and explanations of the

parameters of all of the key words.

The first example is for a model that uses a StressCombatUnit as the source of

demands. The input file discussed is show in Appendix E. In order for the construction of

a model using the control files to be successful, the file must follow a logical ordering.

Some of the lines in the file must be processed in a specific order since there is a

dependency among some keywords for data. Some keywords may appear anywhere in the

file. The paragraphs that follow will go through the sample control file line by line noting

which lines must be in a specific order. The current version (3.x) of FLEXLOGS provides

only limited error checking of the control file. The reader should reference Appendix E

throughout this discussion.

57

The first line in the file causes the software to create the Site. This line must

appear prior to any lines creating Nodes or Links. The description is required, but is only

used as a label and can be any series of alphanumeric characters.

The “RUNS” line is typically next, but can appear anywhere in the control file.

This line determines the number of replications for each data point. The next lines (VAR)

also can be placed anywhere in the file. The “VAR” keyword is used to define the range

and step size of variables in the model. Any data element that would normally require a

number can be replaced by “#varName#” where varName has been defined by a VAR line.

The rest of the data in the VAR line determines the starting value, the stopping value, and

the step size for the variable defined. The starting value must be less than the stopping

value and step size must be positive. Any number of VAR lines may appear in the control

file.

The next line (NODES) constructs the given number of Nodes all at the origin.

This command is useful when constructing a number of Nodes that do not move and that

will be connected by Links whose lengths are fixed and determined ahead of time. The

NODE line, to be discussed in the second example, is used to create Nodes at a specific

location. All of the Nodes in the simulation should be constructed prior to any Links,

SubOrganizations, or other entities located at a Node.

After all of the Nodes are constructed, the Links can be added between them.

The keyword LINK is used for this purpose. The LINK line contains data for the two end

Nodes of the Link, the transportation mode, the initial Link condition, and the length of

58

the Link. Some of the example LINK lines demonstrate that a comment can be added to

the end of any line after all of the required data.

The next line in this example is used to define a SupplyType. The key word

“SUPPLY” is followed by the name used to identify the SupplyType, the unit of issue,

the weight per unit of issue, the volume per unit of issue, and finally the type of criticality

for the item. In this example, we have defined a SupplyType “bullets” that have a unit of

issue of “box.” The bullets weigh 180 pounds per box. Each box occupies 1 cubic foot

and the bullets are critical for combat. Note that the units of weight, distance, and volume

are arbitrary but must be consistent. For example, if the volume of the supplies is given in

cubic feet, then the volume capacity of transportation must also be in cubic feet.

A SUPPLYSET line is used to define a quantity of supplies that will be used when

constructing SubOrganizations. All of the SUPPLY lines must appear prior to defining

any SUPPLYSETs. A SUPPLYSET line creates an array of quantities whose length is

equal to the number of SupplyTypes defined. Any SUPPLY lines that appear after the

SUPPLYSETs will cause errors later in the control file processing. The SUPPLYSET line

provides a name of the set, followed by a default quantity, followed by pairs of the names

of SupplyTypes and quantities for that type. The line ends with the word “ENDSET” to

indicate no more SupplyTypes follow. Any SupplyTypes not specified in the line are

assigned the default value. In this example, since only one SupplyType exists, only the

default value is used. Supply sets can also be derived from other supply sets. This is

accomplished using the key word “SUPPLYSETMULT.” The SUPPLYSETMULT

creates a new supply set by multiplying the values of a previously defined set by a scalar

59

factor. For example the line “SUPPLYSETMULT/1sup/1dos/2.5//” creates the set “1sup”

by multiplying the values in “1dos” by 2.5. The line that begins with “REM” is a remark

and is ignored by the program. Note that since the variable substitutions are made prior to

the file being processed, the software will attempt to substitute for any variables of the

form “#variable#.” To prevent an error caused by an undefined variable, the ‘#’ was

changed to “*” so that the whole line would be ignored.

The next group of lines creates the SubOrganizations for the simulation. The

“SUBORG” or “SUBORGANIZATION” line provides the name of the

SubOrganization, the number of the Node on which it is located, the supply sets that

define the various supply levels, and the personnel strength of the unit. The meaning of

the six supply sets is contained in the full description of the SUBORG line in Appendix C.

The SubOrganizations must be defined prior to any CombatUnits that depend on them

for logistics support.

The next entities defined in the input control file are the transportation assets. The

TRANS or TRANSPORTATION line creates the given number of assets at the specified

SubOrganization. This control line contains data that determines the transportation

mode, the capacities, and the speed of the Transportation.

The DEFAULTSUPPLIER lines determine the source of supplies for each

SubOrganization. These lines must appear after the SUBORG lines. The line simply

specifies whom a SubOrganization should order from if there is no other ordering

information in the knowledge base. In this example no other ordering information is

specified.

60

This example uses a CombatUnit as the source of demands for the simulation.

The “SETDEFAULTCOMBATUNIT” line specifies the name of the class that will be the

CombatUnit. The name of the class must be given in its fully qualified form as shown in

the example. The class must implement the CombatUnit interface and have the correct

constructor. Once the CombatUnit is set, the next lines create CombatUnits and

schedule their initial events. The COMBATUNIT line creates a CombatUnit with the

given SubOrganization or OrangeLogistics as its source of logistic support. The

COMSUME lines schedule the consume event of the CombatUnit just constructed at the

indicated time.

The next two lines are used for debugging and should be commented out for

multiple runs. The DUMP line causes the ModelMaker to produce a dump file

containing the state of the model prior to starting the TimeMaster. The SETDEBUG line

causes the debug flag to be set for all classes. This will produce a very large amount of

output to the console for this model.

Finally, the RUN line starts the model. The number specified limits the length of

the run. Any lines after the RUN line will not be processed prior to running the model and

may cause errors.

This example showed the basic steps needed to run a model with a simple

CombatUnit. The example that follows uses the FlagCombatUnit and is a more

complex model to run. In the paragraphs that follow only the differences from the first

example will be discussed in detail. The control file for this example is also in Appendix

E.

61

The first difference in this example is the creation of some of the Nodes at specific

locations using the NODE line instead of the NODES line. The NODE lines specifies the

two dimensional location of the Node. The Nodes are still numbered in the order they are

created.

The next difference is the creation of Links using the VARIABLELINK key word.

This key word accomplishes that same function as the LINK key word, however the

length of the Link is not specified in the control file. The length of a VariableLink is

calculated during model execution as the straight-line distance between the two end

Nodes. This line is useful for routes between Nodes that move during the simulation.

Since in this example, the CombatUnit is a FlagCombatUnit, some specialized

key words are used. The OBJECTIVE lines set the location for the combat objective for

both the orange and the blue side. These lines must appear before any of the

FlagCombatUnits are created.

The ORANGELOGISTICS lines create an entity that will provide unlimited

logistic support to a CombatUnit. A name, troop strength, and location are specified.

The WPN lines define weapon systems that will be added to the FlagCombatUnits when

they are constructed. The WPN line specifies a name for the weapon, a firing rate (in

units of issue per hour), kills per unit of issue fired, and the name of the SupplyType that

the weapon consumes. These lines must appear prior to the lines that construct

FlagCombatUnits but after the SupplyTypes are defined.

While FlagCombatUnits are CombatUnits, they cannot be constructed in the

control file in the manner the StressCombatUnits were constructed. The

62

FlagCombatUnit requires additional data. Therefore, they are constructed using the

FLAGCOMBATUNIT key word. The FLAGCOMBATUNIT line specifies a name, a

detection range, the side of the conflict, and the speed the unit moves. Immediately

following the FLAGCOMBATUNIT line, the ADDWPN lines add a previously defined

weapon system to the FlagCombatUnit just constructed.

The remaining difference is the use of the SUPPLIER lines to specify a set of

supply rules more complex than the DEFAULTSUPPLIER line. The SUPPLIER lines

specify whom to order from for a specific SupplyType when ordered at the specified

priority. When multiple lines specify multiple suppliers for the same unit, SupplyType,

and priority, the ordering unit will try the suppliers in the order the SUPPLIER lines

appear in the file until the order can be filled.

These two examples were meant to give the reader a feel for how and in what

order the key words must appear in the control file to build a model. For a complete

explanation of the key words see Appendix C.

Once the control file is constructed, there are two methods for running the model.

The model can be executed on a single computer or run in parallel on multiple platforms.

Prior to running the model, FLEXLOGS must be correctly installed. To install

FLEXLOGS, place the file “flexlogs.zip” into a directory. Then add flexlogs.zip to the

CLASSPATH on the computer. For example, if flexlogs.zip is placed in the model

directory on the C drive of a Windows computer, add “C:\model\flexlogs.zip” to the

63

CLASSPATH.5 The installation of FLEXLOGS can be verified by typing “java Version”

at a command prompt. This should print out version information for FLEXLOGS.

In order to run the model on a single computer, one needs only to type “java

Model infile outfile” at a prompt, where infile is the name of the input control file. The

results of each data point will be written to a comma delimited file specified by outfile.

To run the model on multiple computers in the Client/Server mode, one computer

must be chosen as the server for the execution. On the server computer, type “java

ModelServerMain port infile outfile”. The port is the base IP port that the server will use.

The server actually uses three ports (port+0, port+1, and port+2). The infile and outfile

are the same as above. On each of the client machines, type “java ModelClient address

port ”. The address is the IP address of the computer running as the server. The port is

the same port that was specified when the server was started. If the arguments to

ModelClient are left out, address defaults to localhost (127.0.0.1) and port defaults to

7925. The client can be run on any number of computers that are connected to the server

computer.6 The results from the runs on the client computers are sent back to the server

and logged in the file specified.

5 The exact installation procedure and method of setting the CLASSPATH will
vary from platform to platform so a comprehensive set of installation instructions is
beyond the scope of this thesis.

6 Note that some security policies will not allow connection to an arbitrary port. If
the computers with this policy in effect are used, the Client/Server arrangement will not
function correctly. Also on some computers, the server will not respond to a client
running on the same computer.

64

APPENDIX D CONTROL FILE KEY WORD DEFINITIONS

ADDWPN/weaponType//

Adds a weapon system of the given type (created by WPN) to the last
FlagCombatUnit constructed. Must come after the WPN line that creates the weapon
type and after the FlagCombatUnit to which the weapon will be added.

COMBATUNIT/suborg//

Creates a CombatUnit of the class set by SETDEFAULTCOMBATUNIT.
Must appear after the line that creates the logistics support and after the
SETDEFAULTCOMBATUNIT line if used.

Suborg – the SubOrganization or other Logistics that supports the
combatUnit.

CONSUME/supplyType/time//

Schedules a consume event for the last constructed CombatUnit. Must
appear immediately after the line that creates the CombatUnit.

SupplyType – the type of supply to consume

Time – the time to schedule the event

DEBUG/class//

Sets debug for the specified class. Class must be in the form package.class.
If the word ALL is used in place of a class, then debug is set for all classes (see
SETDEBUG). The class must have a static setDebug(boolean) method.

class- the name of the class.

65

DEFAULTSUPPLIER/customer/supplier//

Determines who a SubOrganization should order supplies from in the
absence of any other information. (see SUPPLIER) This line must appear after the
SubOrganizations are created.

customer – the SubOrganization that will order supplies.

supplier – the SubOrganization that the customer should order supplies
from if no supplier is specified by a SUPPLIER card.

DISTDIV/divisor//

Allows all of the random variables in the supply package to be divided by a
number. This has the effect of reducing all of the mean delays in the logistics model. Can
appear anywhere in the control file prior to the RUN line.

divisor – The amount to divide the random numbers by.

DUMP//

Dumps the current information about the model to a file called
“maker.dump”. Can appear anywhere in the control file before the RUN line, however the
dump will only contain the data up to the point in the control file at which DUMP appears.

FLAGCOMBATUNIT/logistics/maxBattleTime/side/speed//

Creates a new FlagCombatUnit. Must appear after the line that creates the
logistics (either SUBORG or ORANGELOGISTICS) and after the OBJECTIVE lines.

logistics- The source of logistics support.

66

maxBattleTime – The length of time after which the unit will retreat from a
battle if it is still in progress.

side – The side of the conflict that this unit is on. (BLUE or ORANGE)

speed – The speed that this unit moves.

LINK/ node1/node2/mode/status/length//

Creates a fixed length Link between the two nodes given. Must appear
after the NODE lines.

node1, node2 – the index of the nodes.

mode – AIR, LAND, PIPE, RAIL, SEA, WATER

status – FAST, MED, SLOW, DESTROYED

length – The length of the link.

LOG/suborganization/attribute/file//

Opens a log file for the given SubOrganization’s attribute. Must appear
after the SubOrganization is created. Should not be used in a control file used for multiple
runs, since the last run will overwrite the file.

suborganization – the SubOrganization whose attribute is to be logged.

attribute – the name of the attribute. (must be a non-array)

file – the file name to write to data to.

LOGPOSITION/logistics/file//

67

Logs the position of either a SubOrganization or a OrangeLogistics to the
file. Must appear after the logistics is created. Should not be used in a control file used for
multiple runs, since the last run will overwrite the file.

logistics – the name of the SubOrganization or OrangeLogistics

file – the name of the log file.

LOGSUPPLY/suborganization/attribute/supplyType/file//

Logs the attribute for the given SupplyType. Must appear after the
SubOrganization is created and all of the SupplyTypes are defined. Should not be used in
a control file used for multiple runs, since the last run will overwrite the file.

suborganization – the SubOrganization whose attribute is to be logged.

attribute – the name of the attribute (must be an array).

supplyType – the name of the SupplyType to log.

file – the file name to write to data to.

NODE/x-coord/y-coord//

Creates a new Node at the given coordinates. Note that node numbers are
assigned in the order the nodes are created. Must appear after the SITE line.

NODES/number//

Creates the given number of nodes at the origin. Note that node numbers
are assigned in the order the nodes are created. Must appear after the SITE line.

number – the number of Nodes to create.

68

OBJECTIVE/side/xCoord/yCoord//

Creates an Objective.

side – the side of the conflict that owns the Objective (BLUE or
ORANGE)

xCoord, yCoord – the coordinates of the Objective.

ORANGELOGISTICS/name/strength/xCoord/yCoord//

Creates an OrangeLogistics. Must appear before the creation of any object
that uses the OrangeLogsitics.

name – the name of the unit.

strength – the troop strength of the unit.

xCoord, yCoord – the initial coordinates of the unit.

REM/

Causes the rest of the line to be ignored. Note that if there are variables of
the form #var# in the line, the driver will still attempt to complete the substitutions. To
prevent this change the ‘#’ to ‘*’ in lines which have been commented out.

RUN/time//

Starts the simulation. Should be the last line in the control file.

time – The time to stop the simulation. If 0, no termination is scheduled
and the simulation will run until there are no more events scheduled.

69

RUNS/number//

Sets the number of replications per data point.

SETDEBUG//

Turns on debug for all objects in the simulation. Warning: this can produce
a large amount of output and considerably slow down the execution of the model. This
line can appear anywhere in the file before the RUN line.

SETDEFAULTCOMBATUNIT/class//

Determines which class will be used to construct CombatUnits with the
COMBATUNIT line. Must appear before any COMBATUNIT lines.

class – the name of the Class used to construct CombatUnits. The name
must be fully qualified (i.e. supply.CombatUnitImpl) The class must have a constructor
that takes a SubOrganization and a TimeMaster as its arguments.

SITE/name//

Creates the Site for the run. Should only appear once, before any Nodes
are created.

SUBORGANIZATION/name/node/prioritySupplySet/criticalSupplySet/

supplyLevelSet/initialSupplySet/desiredSupplySet/eoqSet/strength//

Creates a SubOrganization. Must appear after the Node is created, all
SupplyTypes are defined, and the needed supply sets are defined.

name – the name of the SubOrganization.

node – the location for the SubOrganization.

70

prioritySupplySet – the supply set below which the unit will order at high
priority.

criticalSupplySet – the levels below which the SupplyTypes are considered
critical

supplyLevelSet – The level below which the unit will not act as a supplier.

initialSupplySet – The initial stock levels.

desiredSupplySet – The desired stock levels for the unit.

eoqSet – The minimum order sizes.

strength – The troop strength of the unit.

SUBORG… same format as above, just less typing.

SUPPLIER/customer/supplier/supplyType/priority//

Adds an entry to the Logistics Knowledge Base. Must appear after the
SubOrganizations are defined. These entries are searched in order until a supplier who has
the required amount of supply is found. If none are found, the supplier from the default
table will be used.

customer – the SubOrganization that will order supplies.

supplier – The SubOrganization to order the supplies from.

supplyType – The type of supply this entry corresponds to.

priority – P for high priority, N for non-priority.

SUPPLY/name/unitOfIssue/density/cube/criticalityType//

Creates a new SupplyType.

71

name – the name of the SupplyType.

unitOfIssue – the name of the unit of issue.

density – the weight per unit of issue.

cube – the volume per unit of issue.

criticalityType – COMBAT, MOBILITY, OTHER

SUPPLYSET/name/default/type/val/type/val/…../ENDSET//

Will create an array for use in constructing SubOrganizations. All SUPPLY
lines must appear prior to this so the arrays will be the correct size.

name – the name of the set.

default – the quantity for any SupplyType not specifically listed.

type – name of a previously constructed SUPPLY.

val – the amount of that type in the set.

SUPPLYSETMULT/newName/oldName/mult//

Takes the values in SUPPLYSET oldName and multiplies them by mult and
costructs a SUPPLYSET called newName. Useful for constructing sets based on various
days of supply or scaling sets.

TRANSPORTATION/name/home/mode/cube/weight/numberOfConditions/speed/
…/speed/range/…/range/number//

Constructs Transportation assets. Must appear after the SubOrganization
that is its home is constructed.

72

home – Name of the SubOrganization that owns the Transporatation Asset.

mode – AIR, LAND, PIPE, RAIL, SEA, WATER.

cube – The net capacity in cubic.

weight – The net weight capacity.

numberOfConditions – The number of link conditions in the model
(currently 3). 0 indicates speed and range are independent of link condition.

speed – The speed of the Transportation (link order is FAST, MED,
SLOW).

range – The max range of the Transportation (currently not used).

number – the number if identical assets to create.

VARIBLELINK/node1/node2.mode/status//

Creates a variable length Link between the two nodes given. Must appear after the
NODE lines.

node1, node2 – the index of the nodes.

mode – AIR, LAND, PIPE, RAIL, SEA, WATER

status – FAST, MED, SLOW, DESTROYED

WPN/name/firingRate/pk/supplyType//

Creates a new weapon type. Must appear after the SupplyTypes are
defined but before any ADDWPN lines.

name – The name of the weapon system.

73

firingRate – The maximum firing rate in units of issue per hour.

pk- The number of kills per unit of issue fired (Can be > 1.0)

supplyType – The type of supply this weapon consumes.

75

APPENDIX E SAMPLE INPUT CONTROL FILES

Control File that uses StressCombatUnit
SITE/small war/
RUNS/5//
VAR/premium/0/1000/100//
VAR/dos/500/1600/100//
NODES/13/
LINK/0/1/SEA/FAST/4800/ conus to jpn
LINK/0/1/AIR/FAST/4800/
LINK/0/2/SEA/FAST/5600/ conus to pod
LINK/0/2/AIR/FAST/5600/
LINK/1/2/SEA/FAST/1000/ jpn to pod
LINK/1/2/AIR/FAST/1000/
LINK/2/3/LAND/FAST/500// pod to fs1
LINK/2/3/AIR/FAST/500// pod to fs1
LINK/2/4/LAND/FAST/500// pod to fs2
LINK/2/4/AIR/FAST/500// pod to fs2
LINK/3/5/LAND/FAST/200//
LINK/3/5/AIR/FAST/200//
LINK/3/6/LAND/FAST/200//
LINK/3/6/AIR/FAST/200//
LINK/3/7/LAND/FAST/200//
LINK/3/7/AIR/FAST/200//
LINK/3/8/LAND/FAST/200//
LINK/3/8/AIR/FAST/200//
LINK/4/09/LAND/FAST/200//
LINK/4/09/AIR/FAST/200//
LINK/4/10/LAND/FAST/200//
LINK/4/10/AIR/FAST/200//
LINK/4/11/LAND/FAST/200//
LINK/4/11/AIR/FAST/200//
LINK/4/12/LAND/FAST/200//
LINK/4/12/AIR/FAST/200//

SUPPLY/bullets/box/180/1/COMBAT/
SUPPLYSET/2000/2000/ENDSET//
SUPPLYSET/1dos/#dos#/ENDSET/
REM/SUPPLYSET/1sup/*sup*/ENDSET//
SUPPLYSETMULT/1sup/1dos/2.5// Seemed most efficient.
SUPPLYSETMULT/2sup/1sup/2//
SUPPLYSETMULT/3sup/1sup/3//
SUPPLYSETMULT/4sup/1sup/4//
SUPPLYSETMULT/8sup/1sup/8//
SUPPLYSETMULT/16sup/1sup/16//
SUPPLYSETMULT/20dos/1dos/20/
SUPPLYSETMULT/120dos/1dos/120/

76

SUPPLYSETMULT/2dos/1dos/2//
SUPPLYSETMULT/8dos/1dos/8//
SUPPLYSETMULT/16dos/1dos/16//
SUPPLYSET/huge/100000000/ENDSET/
SUPPLYSETMULT/3dos/1dos/3/
SUPPLYSETMULT/4dos/1dos/4/
SUPPLYSET/one/1.0/ENDSET/
SUPPLYSET/zero/0.0/ENDSET/
SUBORG/conus/0/zero/zero/zero/huge/zero/one/1.0/
SUBORG/jpn/1/zero/zero/zero/2sup/3sup/one/1.0//
SUBORG/pod/2/8sup/1sup/zero/16sup/16sup/one/1//
SUBORG/fs1/3/4sup/1sup/zero/8sup/8sup/one/1//
SUBORG/fs2/4/4sup/1sup/zero/8sup/8sup/one/1//
SUBORG/a1/5/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/a2/6/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/a3/7/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/a4/8/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/b1/9/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/b2/10/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/b3/11/2dos/2000/2dos/3dos/3dos/one/1//
SUBORG/b4/12/2dos/2000/2dos/3dos/3dos/one/1//
TRANS/TEU/conus/SEA/27000/700000/0/30/5000/500/
TRANS/PLANE/conus/AIR/2000/3200/0/500/5000/500/ prem
REM/TRANS/TEU/jpn/SEA/2700/70000/0/30/5000/500/
REM/TRANS/PLANE/jpn/AIR/2000/3200/0/500/5000/#premium#/
TRANS/BIGTRUCK/pod/LAND/3700/70000/0/10/5000/500/
TRANS/PLANE/pod/AIR/2000/3200/0/500/5000/#premium#/
TRANS/10 helo/fs1/AIR/2000/50000/0/300/500/#premium#/
TRANS/truck/fs1/LAND/3850/100000/0/10/500/500/
TRANS/10 helo/fs2/AIR/2000/50000/0/300/500/#premium#/
TRANS/truck/fs2/LAND/3850/100000/0/10/500/500/
DEFAULTSUPPLIER/pod/conus/
DEFAULTSUPPLIER/jpn/conus//
DEFAULTSUPPLIER/fs1/pod//
DEFAULTSUPPLIER/fs2/pod//
DEFAULTSUPPLIER/a1/fs1//
DEFAULTSUPPLIER/a2/fs1//
DEFAULTSUPPLIER/a3/fs1//
DEFAULTSUPPLIER/a4/fs1//
DEFAULTSUPPLIER/b1/fs2//
DEFAULTSUPPLIER/b2/fs2//
DEFAULTSUPPLIER/b3/fs2//
DEFAULTSUPPLIER/b4/fs2//
SETDEFAULTCOMBATUNIT/combat.StressCombatUnit//
COMBATUNIT/a1//
CONSUME/bullets/0//
COMBATUNIT/a2//
CONSUME/bullets/0//

77

COMBATUNIT/a3//
CONSUME/bullets/0//
COMBATUNIT/a4//
CONSUME/bullets/0//
COMBATUNIT/b1//
CONSUME/bullets/0//
COMBATUNIT/b2//
CONSUME/bullets/0//
COMBATUNIT/b3//
CONSUME/bullets/0//
COMBATUNIT/b4//
CONSUME/bullets/0//
DUMP
REM/SETDEBUG//
RUN/1000/

A control file that uses FlagCombatUnit
REM/
RUNS/30//
VAR/dos/200/500/100//
VAR/premium/0/50/10//
SITE/S E A//
NODES/3//
NODE/0/0// Pusan
NODE/0/0// Def1
NODE/0/0// Def2
NODE/0/0// Def3
NODE/20/250// Off1
NODE/40/250// Off2
NODE/-20/250// Off3
NODE/-40/250// Off4
LINK/0/1/SEA/FAST/2100// conus to HI
LINK/1/2/SEA/FAST/3400// HI to JPN
LINK/2/3/SEA/FAST/700// JPN to Pusan
LINK/2/3/AIR/FAST/600// JPN to Pusan
LINK/0/3/SEA/FAST/5600// conus to pusan
LINK/0/3/AIR/FAST/5600// conus to pusan
LINK/1/3/SEA/FAST/4200// HI to pusan
LINK/1/3/AIR/FAST/4200// HI to pusan
REM/ Links between Pusan and defensive units.
VARIABLELINK/3/4/AIR/FAST//
VARIABLELINK/3/4/LAND/FAST//
VARIABLELINK/3/5/AIR/FAST//
VARIABLELINK/3/5/LAND/FAST//
VARIABLELINK/3/6/AIR/FAST//
VARIABLELINK/3/6/LAND/FAST//

78

REM/ Links between defensive units.
VARIABLELINK/4/5/AIR/FAST//
VARIABLELINK/4/6/AIR/FAST//
VARIABLELINK/6/5/AIR/FAST//
REM/ Links between Pusan and Offensive units.
VARIABLELINK/3/7/AIR/FAST//
VARIABLELINK/3/7/LAND/FAST//
VARIABLELINK/3/8/AIR/FAST//
VARIABLELINK/3/8/LAND/FAST//
VARIABLELINK/3/9/AIR/FAST//
VARIABLELINK/3/9/LAND/FAST//
VARIABLELINK/3/10/AIR/FAST//
VARIABLELINK/3/10/LAND/FAST//
REM/ Links between Offensive Units.
VARIABLELINK/7/8/AIR/FAST//
VARIABLELINK/8/9/AIR/FAST//
VARIABLELINK/9/10/AIR/FAST//

SUPPLY/bullets/case/180/1/COMBAT//
SUPPLY/shells/ea/500/10/COMBAT//
SUPPLYSET/1dos/#dos#/ENDSET//
SUPPLYSET/1combat/400/ENDSET//
SUPPLYSETMULT/2combat/1combat/2//
SUPPLYSETMULT/3combat/1combat/3//
SUPPLYSET/zero/0/ENDSET//
SUPPLYSETMULT/3dos/1dos/3//
SUPPLYSETMULT/2dos/1dos/2//
SUPPLYSETMULT/10dos/1dos/10//
SUPPLYSETMULT/35dos/1dos/35//
SUPPLYSETMULT/50dos/1dos/50//
SUPPLYSETMULT/999dos/1dos/99999//

OBJECTIVE/BLUE/0/0//
OBJECTIVE/ORANGE/0/600//

ORANGELOGISTICS/orange defence/1400/0/600//
ORANGELOGISTICS/o1/1000/20/350//
ORANGELOGISTICS/o2/1000/40/350//
ORANGELOGISTICS/o3/1000/-20/350//
ORANGELOGISTICS/o4/1000/-40/350//

SUBORG/conus/0/zero/zero/zero/999dos/zero/1dos/1//
SUBORG/hi/1/3dos/1dos/zero/50dos/50dos/10dos/1//
SUBORG/jpn/2/3dos/1dos/zero/35dos/35dos/10dos/1//
SUBORG/pusan/3/3dos/1dos/zero/10dos/10dos/3dos/1//
SUBORG/def1/4/2dos/1dos/2dos/3dos/3dos/1dos/2000//
SUBORG/def2/5/1dos/1dos/2dos/3dos/3dos/1dos/2000//
SUBORG/def3/6/1dos/1dos/2dos/3dos/3dos/1dos/2000//

79

SUBORG/off1/7/1dos/1dos/2dos/3dos/3dos/1dos/2000//
SUBORG/off2/8/1dos/1dos/2dos/3dos/3dos/1dos/2000//
SUBORG/off3/9/1dos/1dos/2dos/3dos/3dos/1dos/2000//
SUBORG/off4/10/1dos/1dos/2dos/3dos/3dos/1dos/2000//

WPN/rifle/1/.02/bullets//
WPN/artillery/.1/.5/shells//

REM/ BLue units
FLAGCOMBATUNIT/def1/10/BLUE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/def2/10/BLUE/0.75//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/def3/10/BLUE/0.5//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/off1/10/BLUE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/off2/10/BLUE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/off4/10/BLUE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/off4/10/BLUE/1//
ADDWPN/rifle//
ADDWPN/artillery//
REM/ Orange units
FLAGCOMBATUNIT/orange defence/10/ORANGE/.5//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/o1/10/ORANGE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/o2/10/ORANGE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/o3/10/ORANGE/1//
ADDWPN/rifle//
ADDWPN/artillery//
FLAGCOMBATUNIT/o4/10/ORANGE/1//
ADDWPN/rifle//
ADDWPN/artillery//

REM/ transportation assets

80

TRANS/TEU/conus/SEA/2700/70000/0/20/9999/500//
TRANS/TEU/hi/SEA/2700/70000/0/20/9999/500//
TRANS/TEU/jpn/SEA/2700/70000/0/20/9999/500//
TRANS/plane/conus/AIR/2000/3200/0/400/9999/#premium#//
TRANS/plane/hi/AIR/2000/3200/0/400/9999/#premium#//
TRANS/plane/jpn/AIR/2000/3200/0/400/9999/#premium#//
TRANS/5T/pusan/LAND/385/10000/0/30/9999/100//
TRANS/helo/pusan/AIR/200/5000/0/200/999/#premium#//
TRANS/helo/def1/AIR/200/5000/0/200/9999/1//
TRANS/5T/def1/LAND/385/10000/0/30/9999/10//
TRANS/helo/def2/AIR/200/5000/0/200/9999/1//
TRANS/5T/def2/LAND/385/10000/0/30/9999/10//
TRANS/helo/def3/AIR/200/5000/0/200/9999/1//
TRANS/5T/def3/LAND/385/10000/0/30/9999/10//
TRANS/helo/off1/AIR/200/5000/0/200/9999/1//
TRANS/5T/off1/LAND/385/10000/0/30/9999/10//
TRANS/helo/off2/AIR/200/5000/0/200/9999/1//
TRANS/5T/off2/LAND/385/10000/0/30/9999/10//
TRANS/helo/off3/AIR/200/5000/0/200/9999/1//
TRANS/5T/off3/LAND/385/10000/0/30/9999/10//
TRANS/helo/off4/AIR/200/5000/0/200/9999/1//
TRANS/5T/off4/LAND/385/10000/0/30/9999/10//
DEFAULTSUPPLIER/hi/conus//
DEFAULTSUPPLIER/jpn/hi//
DEFAULTSUPPLIER/pusan/jpn//
DEFAULTSUPPLIER/def1/pusan//
DEFAULTSUPPLIER/def2/pusan//
DEFAULTSUPPLIER/def3/pusan//
DEFAULTSUPPLIER/off1/pusan//
DEFAULTSUPPLIER/off2/pusan//
DEFAULTSUPPLIER/off3/pusan//
DEFAULTSUPPLIER/off4/pusan//

SUPPLIER/pusan/jpn/bullets/P//
SUPPLIER/pusan/jpn/shells/P//
SUPPLIER/pusan/hi/bullets/P//
SUPPLIER/pusan/hi/shells/P//
SUPPLIER/pusan/conus/bullets/P//
SUPPLIER/pusan/conus/shells/P//

REM/ allow canniblization by un remming
REM/SUPPLIER/def1/pusan/bullets/P//
REM/SUPPLIER/def2/pusan/bullets/P//
REM/SUPPLIER/def3/pusan/bullets/P//

REM/SUPPLIER/off1/pusan/bullets/P//
REM/SUPPLIER/off2/pusan/bullets/P//

81

REM/SUPPLIER/off3/pusan/bullets/P//
REM/SUPPLIER/off4/pusan/bullets/P//

REM/SUPPLIER/def1/def2/bullets/P//
REM/SUPPLIER/def2/def1/bullets/P//
REM/SUPPLIER/def2/def3/bullets/P//
REM/SUPPLIER/def3/def2/bullets/P//
REM/SUPPLIER/def1/def3/bullets/P//
REM/SUPPLIER/def3/def1/bullets/P//

REM/SUPPLIER/off1/off2/bullets/P//
REM/SUPPLIER/off2/off3/bullets/P//
REM/SUPPLIER/off3/off2/bullets/P//
REM/SUPPLIER/off4/off3/bullets/P//
REM/SUPPLIER/off2/off1/bullets/P//
REM/SUPPLIER/off3/off4/bullets/P//

REM/SUPPLIER/def1/pusan/bullets/P//
REM/SUPPLIER/def2/pusan/bullets/P//
REM/SUPPLIER/def3/pusan/bullets/P//

REM/SUPPLIER/off1/pusan/shells/P//
REM/SUPPLIER/off2/pusan/shells/P//
REM/SUPPLIER/off3/pusan/shells/P//
REM/SUPPLIER/off4/pusan/shells/P//

REM/SUPPLIER/def1/def2/shells/P//
REM/SUPPLIER/def2/def1/shells/P//
REM/SUPPLIER/def2/def3/shells/P//
REM/SUPPLIER/def3/def2/shells/P//
REM/SUPPLIER/def1/def3/shells/P//
REM/SUPPLIER/def3/def1/shells/P//

REM/SUPPLIER/off1/off2/shells/P//
REM/SUPPLIER/off2/off3/shells/P//
REM/SUPPLIER/off3/off2/shells/P//
REM/SUPPLIER/off4/off3/shells/P//
REM/SUPPLIER/off2/off1/shells/P//
REM/SUPPLIER/off3/off4/shells/P//

REM/ logs
REM/LOGSUPPLY/off1/curSupply/bullets/off1_bullets.txt//
REM/LOG/def1/strength/def1.txt//
REM/LOG/def2/strength/def2.txt//
REM/LOG/def3/strength/def3.txt//
REM/LOG/off1/strength/off1.txt//
REM/LOG/off2/strength/off2.txt//
REM/LOG/off3/strength/off3.txt//

82

REM/LOG/off4/strength/off4.txt//

REM/DEBUG/supply.Asset//
REM/DEBUG/TM.TimeMaster//
REM/DEBUG/battle.Lanchester//
REM/DEBUG/combat.FlagCombatUnit//
RUN/1999//

83

APPENDIX F SOFTWARE AND HARDWARE USED

The FLEXLOGS model was developed using Sun’s Java Development kit version

1.1.6 and a text editor VIM (“vi improved”) Version 5.1 [Bram Moolenaar et al., 1998].

The model was primarily run using Sun’s Java Virtual Machine version 1.1.6.

(Note that 1.1.6 is significantly faster than previous versions.)

The data analysis was conducted using S-plus version 4.5 from Mathsoft. (Note:

version 4.5 is the first version to support the color coded 3-D graphs used in this

research.)

This document was produced using Microsoft Word-97 and Powerpoint-97.

FLEXLOGS was developed primarily on a Gateway-2000 with a Pentium-90

processor and 80MB of RAM and an IBM ThinkPad 760ED (laptop) with a Pentium-133

processor and 16MB of RAM.

The model runs were conducted on a wide range of platforms including: The two

systems mentioned above, Sun Sparc 20’s, and a number of Dell Pentium-400 computers.

84

85

APPENDIX G AREAS FOR POTENTIAL IMPROVEMENT OF

FLEXLOGS

During development of the model, a number of potential improvements of the

model were identified. This appendix provides an explanation of some these

improvements. No attempt was made to prioritize this list. Some of the changes required

are minor, while others may result in a major change to the software. Some of the

required changes are marked in the source code with the word “TODO” to allow for easy

identification.

In battle.Referee, add a random element to the computeDetection method.

Currently the range at which units detect is deterministic. This only affects the simulation

when FlagCombatUnit is used.

In combat.ConsumptionEvent, implement the rate-based consumption event.

Currently, only bulk consumption at a specific time is implemented. Implementing rate-

based consumption will allow for more accurate modeling of the consumption of supplies

during a battle.

In combat.FlagCombatUnit, make defensiveFactor, SensorRange, and

StealthFactor able to be changed. These values currently take on default values that

cannot be changed.

In combat.FlagCombatUnit, add some random elements to the outcome of a fight.

The results of the Lanchester calculations are currently purely deterministic.

86

In combat.FlagCombatUnit, improve the fuel consumption model. The fuel

consumption model is currently very simplistic. The unit consumes one unit of fuel per

one unit of distance per person assigned to the unit.

In maker.CombatUnitMaker, add a check to make sure that the class provided

does in fact implement the CombatUnit interface. The CombatUnitMaker assumes that

the class set in the ModelMaker implements the interface without checking.

In maker.ModelMaker, add flags to improve the ability to check that the key

words appear in the correct order.

In supply.Link, if a Link is destroyed, need to figure out what to do with any

Transportation on the Link.

In supply.ModePool, the variable "util" that controls the minimum utilization for

Transportation should probably be somewhere else and should be changeable at run time.

In supply.SubOrganization and Transportation, modify so that multiple

Requisitions can share the same Transportation.

The ability to model pipelines should be added. The pipeline would require the

modeling of a continuous flow Transportation.

Currently there is no use of fuel by Transportation assets modeled. This could be

added by requiring the supplier to expend fuel for each Requisition shipped, based on the

Transportation used and the distance shipped. The SubOrganization would also need a

queue to hold Requisitions waiting for fuel.

One area of study not currently supported is the susceptibility of large stockpiles to

attack. Modeling this would require adding an interdiction model to the combat model.

87

The random variate distributions should be able to be set at run time. This would

require modifications to the ModelMaker to add the additional keywords and significant

modifications to the class holding the distributions (Dist).

Add the ability in FlagCombatUnit for a unit to be destroyed. Currently a unit will

continue to fight with smaller and smaller troop strengths and will not reach some value at

which the unit must disband.

Add the ability to treat troops as a SupplyType so that they can be replenished.

The key to implementation is some method of distinguishing them as a special SupplyType

so that the SubOrganization and any CombatUnit can track them as the troop strength.

In the ModelDriver, a way to have a variable depend on the value of other

variables should be developed to allow more flexibility in varying model parameters. The

same change would also need to be made in the VariableServer class.

Modify the simulation to make it High Level Architecture (HLA) compliant. The

logistics model and the combat model should be split and implemented separately. This is

probably a thesis size project in itself, but would allow FLEXLOGS to be federated with

an existing, validated combat model.

Incorporate a way to model the effects of information technology. This first

requires a determination of what “information technology” means in this context.

88

REFERENCES

Atchesson, Michael J., “Cost-Benefit Analysis of the Enhanced Transportation Service
Program,” Master’s Thesis, Naval Postgraduate School, Monterey, California, June 1997.

Bankes, Steven C., “Exploratory Modeling and the Use of Simulation for Policy
Analysis,” RAND, Santa Monica, California, 1992.

Brooks, A., Bankes, S., Bennett, B., “Weapon Mix and Exploratory Analysis, A Case
Study,” RAND, Santa Monica, California, 1997.

Buss, Arnold, OA-4333 class notes, Naval Postgraduate School, Monterey, California,
1998.

Buss, Arnold, OA-3302 class notes, Naval Postgraduate School, Monterey, California,
1997.

Buss, Arnold, OA-3200 class notes, Naval Postgraduate School, Monterey, California,
1997.

Halvorson, T. G., “Improvement to a Surge and Sustainment Model for Wargaming,”
Master’s Thesis, Naval Postgraduate School, Monterey, California, 1994.

Huffaker, Joseph W., “Modeling the Effects of Logistics on Ground Combat and
Maneuver,” Master’s Thesis, Naval Postgraduate School, Monterey, California,
September 1996.

Joint Vision 2010, Joints Chiefs of Staff, Washington D.C.

Long, John A., “Modeling Theater Level Logistics for Wargames,” Master’s Thesis,
Naval Postgraduate School, Monterey, California, December 1993.

Moolewaar, Bram et. al, “The ViM editor,” Computer Software, 1998.

Noel, Jack S. II, “An Object-Oriented Logistics Over the Shore Simulation: An Aid in
Throughput Estimation,” Master’s Thesis, Naval Postgraduate School, Monterey,
California, September 1993.

Owens, William A., “The Emerging U.S. System of Systems.” In Johnson, Stuart, and
Libicki, Martin (Eds.) Dominant Battlespace Knowledge, National Defense University,
Washington, D.C., 1995.

Plunk, Curtis D., “A Computer Simulation of Logistics Networks for Wargame Umpires,”
Master’s Thesis, Naval Postgraduate School, Monterey, California, March 1995.

89

Seager, Kevin, personal conversation, June 1998.

Simulation Analysis Center (SAC) briefings, December 1997.

Simulation Analysis Center (SAC), “A Conceptual Object Model (COM) of Military
Logistics (Draft),” December 1997.

Stuart, Chris, “Supporting Operational Maneuver from the Sea from a Sea Base”,
Master’s Thesis, Naval Postgraduate School, Monterey, California, September 1998.

Stork, Kirk A., “Sensors in Object Oriented Discrete Event Simulation,” Master’s Thesis,
Naval Postgraduate School, Monterey, California, September 1996.

Taylor, James G., Lanchester Models of Warfare, Operations Research Society of
America, Arlinton, Va., March 1983.

Zhong, Caoyuan, “Modeling of Airport Operations Using an Object-Oriented
Approach,” PhD dissertation, Virginia Polytechnic Institute and State
University, February 1997.

91

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center ... 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Defense Logistics Studies Information Exchange 1
U.S. Army Logistics Management College
Fort Lee, Virginia 23801-6043

4. A. H. Buss, Code OR/Bu.. 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

5. Wayne Hughes, Code OR/Hl.. 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

6. Office of the Secretary of Defense .. 1
Program Analysis and Evaluation
Attn: LtCol Charles Mugno, USMC
Pentagon, Room 2E314
Washington, D.C. 20301-1800

7. Office of the Secretary of Defense .. 1
Program Analysis and Evaluation
Attn: Dr Kevin Seager
Pentagon, Room 2E314
Washington, D.C. 20301-1800

8. Office of the Secretary of Defense .. 1
Program Analysis and Evaluation
Attn: Mr. James Johnson
Pentagon, Room 2E314
Washington, D.C. 20301-1800

92

9. LCDR John Ruck ... 1
5641 Pembrook Dr.
New Orleans, Louisiana 70131

10. Chief of Naval Operations (N-81)... 1
ATTN: Dr. Susan Marquis
Navy Department
Washington, DC 20350

11. Deputy Chief of Naval Operations (Logistics)... 1
ATTN: LCDR Carolyn Kresek, N421C
2000 Navy Pentagon
Washington, DC 20350-2000

12. Chief of Naval Operations (N-816) ... 1
ATTN: Mr. Bruce Powers
Navy Department
Washington, D.C. 20350

13. D. A. Schrady, Code OR/Sd... 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943-5000

Filename: Thesis.doc
Directory: F:\Users\Students\Ruck
Template: C:\Program Files\Microsoft Office\Templates\Chapter.dot
Title: I
Subject:
Author: John Ruck
Keywords:
Comments:
Creation Date: 09/23/98 12:13 PM
Change Number: 14
Last Saved On: 09/29/98 8:26 AM
Last Saved By: jlruck
Total Editing Time: 119 Minutes
Last Printed On: 04/15/99 11:37 AM
As of Last Complete Printing

Number of Pages: 104
Number of Words: 16,734 (approx.)
Number of Characters: 95,388 (approx.)

